Оксигенераторы своими руками – Оксигенераторы для рыбоводства: самодельный биофильтр для узв

Чертёж мини-УЗВ своими руками из доступных материалов

Потребность человечества в морепродуктах растёт вместе с населением, а ценные виды рыб находятся на пределе максимально возможного улова. Традиционное рыбоводство требует избытка водных ресурсов. Растущее загрязнение мирового океана сказывается на качестве даров моря. Всё это способствуют популярности УЗВ (установок замкнутого водоснабжения), позволяющих выращивать экологически чистую рыбу в небольшом количестве воды.

бизнес план разведение в узвУЗВ, позволяющие выращивать экологически чистую рыбу, набирают все большую популярность

Принцип работы УЗВ

В качестве системы жизнеобеспечения водных организмов в рециркуляционных аквакультурах незаменимы установки замкнутого водоснабжения, позволяющие использовать ежедневно не менее 90% восстановленной после жизнедеятельности рыб воды.

Как правило, УЗВ предназначены для интенсивных аквакультур с высокой продуктивностью на единицу объёма воды.

Верхний предел плотности рыбы в УЗВ на основе атмосферного воздуха составляет около 50 грамм на литр воды. В установках с использованием жидкого кислорода этот показатель может быть выше. Содержание такого количества живой рыбы в столь ограниченном объёме воды требует качественного проектирования и исполнения УЗВ.

Как правило, рыба умирает от перенаселения, потому что:

  • задохнулась;
  • отравилась азотистыми отходами собственной жизнедеятельности.
узвУЗВ предназначены для активных аквакультур

Соответственно, верно функционирующая система циркуляции должна достаточно аэрировать воду, добавляя в неё кислород, и, наоборот, выводить диоксид углерода и аммиак.

Последний рыба выделяет в качестве продукта катаболизма белка. Для того чтобы эти процессы производились эффективно, необходимо предварительно отделять твёрдые экскременты и остатки корма.

Если Вам понравилось видео — поделись с друзьями:

Поделиться на Facebook

Поделиться в ВК

Поделиться в ОК

Поделиться в Twitter


Таким образом, восстановление воды включает в себя три процесса:
  1. Удаление твёрдых отходов.
  2. Газовый обмен.
  3. Денитрификация.

Последние два могут проводиться одновременно или в любой последовательности. Восстановление воды невозможно эффективно провести в самом аквариуме. Жидкость необходимо изымать для очистки и возвращать обратно, перемещая её с помощью насосов.

Чертёж мини-УЗВ своими руками из доступных материаловУстройство УЗВ может отличаться деталями от указанного на схеме

Устройство УЗВ от изображённого на схеме может отличаться наличием дополнительных модулей: фильтров, насосов, обеззараживателей, блока регулировки кислотности, нагревателей, кислородного генератора, измельчителей, автоматики, отстойников и т. п. Крупные фермы наращиваются умножением однотипных блоков. Основные преимущества систем рециркуляционной аквакультуры перед искусственными прудами и водоёмами:

  • не наносят ущерб окружающей среде;
  • дают возможность полного управления производственными процессами;
  • позволяют круглогодично выращивать рыбу;
  • не зависят от природных факторов;
  • помогают осуществлять полный контроль заболеваний;
  • работают в зонах экстремальных климатических условий.

Если Вам понравилось видео — поделись с друзьями:

Поделиться на Facebook

Поделиться в ВК

Поделиться в ОК

Поделиться в Twitter

Проектирование замкнутых аквакультур

В действующей системе все компоненты должны работать слаженно, иначе её продуктивность будет ограничена производительностью самого слабого блока.

Например, нет смысла в мощном нитрификаторе, если за его работой не успевает модуль газообмена. Прогноз нагрузок на каждый узел — единственно верный способ проектирования компонентов.

Правильной точкой отсчёта будет количество рыбы, планируемое к выращиванию. Этот показатель поможет разобраться с необходимым объёмом пищи, что, в свою очередь, позволит рассчитать, сколько кислорода понадобится для метаболизма этого корма. Другие вычисления дадут мощность установки для аэрации и т. п. Косвенные и прямые расчёты продолжают до тех пор, пока не будет разработан проект системы, теоретически поддерживающий предполагаемую нагрузку без избыточных мощностей каждого из блоков.

рыба в узвТочкой отсчета в сборке УЗВ является планируемое количество рыбы

Непромышленные УЗВ для выращивания рыбы своими руками для домашних хозяйств могут проектироваться на основании иных начальных условий. Доступность материалов и наличие свободного места в этом случае важнее производительности. Компоненты для таких систем могут изготавливаться из самых различных материалов, но должны быть обязательно инертными и не вступать в реакцию с водой. Оцинкованные и медные трубы для инсталляции в этом случае непригодны, так как могут быть токсичны по отношению к обитателям системы. Установка замкнутого водоснабжения для выращивания рыбы, исполненная из пластиковых ёмкостей, труб и фитингов — идеальный вариант.

Стеклопластиковые или полиэтиленовые резервуары химически нейтральны, легко чистятся и стерилизуются. Круглые ёмкости обладают преимуществом в сравнении с квадратными. Оно заключается в способности таких сосудов к самоочистке: если воду напорно подавать в радиальный аквариум под углом, то установится круговое движение.

Слив, организованный в центре, позволяет отходам и остаткам корма самостоятельно уходить в отверстие.

Если Вам понравилось видео — поделись с друзьями:

Поделиться на Facebook

Поделиться в ВК

Поделиться в ОК

Поделиться в Twitter

Простейшая самодельная установка

Из элементов, доступных в любом строительном магазине, и с помощью инструментов домашнего мастера можно за несколько часов изготовить мини-УЗВ своими руками. Чертёж установки из недорогих компонентов:

 

узв своими рукамиУЗВ можно собрать из недорогих материалов своими руками

Основа системы — две бочки, желательно предназначенные для пищевых целей. Одна из них служит аквариумом для рыбы, из нижней части которого при помощи насоса вода перемещается в пластиковое ведро, вмонтированное в верхнюю часть второй бочки. Оно является ёмкостью для механического фильтра, отделяющего остатки корма и твёрдые фекалии. Механически очищенная жидкость через стояк попадает на дно биофильтра для переработки азотистых отходов, а затем снова попадает в аквариум по возвратной трубе.

Подбор сантехнических компонентов зависит от максимальной мощности насоса, производительность которого можно регулировать шаровым краном на перегонном трубопроводе.

бассейнПодбор элементов УЗВ зависит от технических условий помещения

Механические фильтры можно сделать из хозяйственных губок или мебельного поролона. В качестве денитрификатора лучше использовать специальную плавающую биозагрузку для УЗВ. Воздушный компрессор низкого давления, нагнетающий воздух на дно аквариума, послужит аэратором.

Технические и биологические основы рециркуляционных аквакультур хорошо изучены. Накопленный опыт позволяет проектировать и изготавливать УЗВ любой сложности и масштабов. Единственный ограничивающий фактор, препятствующий бурному развитию замкнутых систем рыбоводства — экономика. Рыба из УЗВ дороже пойманной в открытом водоёме. Самые успешные рециркуляционные аквакультуры производят дорогие морепродукты для нишевых рынков или расположены в экстремальных климатических зонах. Эта технология пока не позволяет накормить весь мир, но её вклад в улучшение экологии водных бассейнов трудно переоценить.

Если Вам понравилось видео — поделись с друзьями:

Поделиться на Facebook

Поделиться в ВК

Поделиться в ОК

Поделиться в Twitter

(Visited 903 times, 8 visits today)

Facebook

Twitter

Вконтакте

Google+

ribnydom.ru

УЗВ своими руками: реально или нет?

Автор:

На просторах Интернета можно найти массу псевдоучений на тему установок замкнутого водоснабжения: о том, как можно сделать систему самому и как это здорово в экономическом плане. Разберёмся, реально это или нет?

узв.png

Давайте разложим всё по полочкам. Первое, с чего нужно начать, это выяснить биологические особенности выбранного вида рыб. Мало кто из неспециалистов задумывается о том, что для каждого вида есть свои особенности обитания, которые следует учитывать при выращивании. Также необходимо определиться с размерами, до которых вы хотите выращивать рыбу. Для чего это нужно? В первую очередь для экономии денег, то есть эффективности проекта. К примеру, систему, спроектированную для выращивания лососёвых, можно использовать и для осетровых, но это окажется неэффективным хотя бы потому, что 2/3 объёма воды в бассейнах попросту не будут использоваться. Каждая система УЗВ должна проектироваться под конкретный выращиваемый вид рыб и даже под определённую товарную навеску.

Следующий пункт – это собственно сама система УЗВ, как она должна быть устроена и из чего состоять. На просторах Интернета перечисляют: бассейны с рыбой, механический и биологический фильтры, ультрафиолетовый стерилизатор, кислородный конус. На первый взгляд, всё легко и просто. Но дьявол, как говорится, в деталях. И чтобы понять эти самые детали, надо разобрать всё по косточкам.

Бассейны

Естественное желание в целях экономии места сделать квадратные или прямоугольные бассейны. На первый взгляд, логичное решение. Только вот как себя в них рыба будет чувствовать, каков будет гидрологический режим, насколько хорошо будут вымываться загрязнения из бассейна? Есть большая разница между объёмом бассейна и его эффективным объёмом по оптимальному гидрологическому режиму.

Фильтры

Начнём с классики – с барабанных микросетчатых фильтров. Первая ошибка при их выборе – производительность по пропускной способности воды. Например, если в системе 100 м3 воды, то и фильтр ошибочно подбирают на те же 100 м3. Возникает вопрос: а мы что, просто будем гонять воду по кругу или чистить её? О том, как посчитать, сколько загрязнений будет в воде от рыбы, Кулибины из Интернета ответа не дают. Да и многие профессионалы от рыбоводства не знают или не хотят знать о том, что даже самые хорошие микросетчатые фильтры пропускают свыше 45% загрязнений (подробную информацию на эту тему опубликовал один из самых известных в мире производителей из Швеции). А кто считал затраты по энергетике и расход воды на промывку этих классических фильтров и куда делись те самые 45% загрязнений?

Биофильтры

Почитаешь рассказы о том, как просто их делать, и понимаешь, что «каждый суслик – агроном». Прежде чем верить в эти россказни, неплохо бы обратиться к той же «Википедии», где подробно расписана реакция разложения аммонийного азота. Мало кто задумывается о том, куда попадают отмирающие бактерии, которые, собственно, и осуществляют биологическую очистку. В природе отмирающие бактерии – основная составляющая ила, который оседает на дне водоёмов. А в УЗВ? В неправильно спроектированной системе они по ней и «гуляют».


«Помню из собственной практики, как приехал к давнему знакомому посмотреть его УЗВ. Увидев биофильтр, я лишился дара речи. Мощность его была в 200 (!) раз ниже необходимой. Стало интересно, как это у товарища получилось. А оказалось всё просто: на одном известном сайте некий Кулибин выложил расчёты, в которых допустил ошибку на 2 порядка, то есть в 100 раз!»

Стерилизация воды

Даже в наше время многие пытаются использовать ультрафиолетовые стерилизаторы. При этом эффективность работы УФ-ламп проконтролировать нереально: она очень сильно зависит от прозрачности воды, а сами лампы имеют широкий разброс по параметрам. Для стерилизации лучше использовать озон. Поскольку этот газ – сильнейший окислитель, он является и сильнейшим стерилизатором, окисляя растворённые в воде примеси. Озон достаточно быстро разлагается на атомарный кислород с последующим образованием молекулярного кислорода. Однако с озонированием, при его чрезвычайно высокой эффективности, нужно быть крайне осторожным. Озон должен простерилизовать воду, но при этом нельзя допустить, чтобы он в значительных количествах попал в бассейны к рыбе.

После всего вышеизложенного ещё осталось желание заниматься самоделками? Тогда последний гвоздь!

Экономика

Зачастую в мини-, микро- и прочих самодельных УЗВ пытаются эксплуатировать бытовую технику под промышленной нагрузкой, на которую она не рассчитана. Поясню на примере. Воду в УЗВ надо насыщать кислородом, а где его брать? Люди ставят медицинский концентратор кислорода; проходит незначительное время – и он ломается. Причина проста: неправильные условия эксплуатации. То же самое можно сказать и про насосы, фильтры и так далее.

Каждым делом должны заниматься профессионалы, соответственно, они и должны проектировать систему с учётом биологии, гидрологии, физики и… математики. Да-да, сухая математика с цифрами. Любой проект изначально надо просчитывать на его эффективность. Лично моё мнение: нереально сделать эффективную УЗВ «на коленке» и так же нереально сделать эффективную мини-УЗВ. Просто возьмите годовой объём продукции (5, 10 тонн), разделите на 365 (количество дней в году) и получите объём продукции в сутки. На практике УЗВ мощностью меньше 100 тонн вообще не окупается.

Источник: журнал Рыболовство и Рыбоводство, № 2, зима 2018

Понравилась статья?

Оформите бесплатную подписку на электронную версию журнала Рыболовство и Рыболовство на сайте magazine.fish и будьте в курсе новостей отрасли. 

petrokanat.ru

Компоненты УЗВ - Оксигенация

Подробности

Просмотров: 3066


Процесс аэрации добавляет в воду некоторое количество  кислорода посредством простого обмена газов в воде и воздухе, зависящего от насыщенности воды кислородом. В состоянии равновесия насыщенность воды кислородом составляет 100%. Когда вода проходит через рыбоводные бассейны, содержание кислорода понижается, обычно до 70%, а в биофильтре оно становится еще ниже. Как правило, аэрация этой воды повышает насыщенность приблизительно до 90%; в некоторых системах можно достичь 100%. Однако, в поступающей воде часто предпочтительнее иметь насыщенность кислородом, превышающую 100%, чтобы количество доступного кислорода было достаточным для высокого и стабильного темпа роста рыбы. Для достижения более высоких уровней насыщенности требуется система оксигенации, использующая чистый кислород. Чистый кислород часто подается в бассейны в форме жидкого кислорода, но также может производиться на хозяйстве с помощью генератора кислорода. Есть несколько методов получения перенасыщенной воды с содержанием кислорода,

Иллюстрация 2.14: Кислородный конус и оксигенатор шахтноготипа (Waterflow: Течение воды; In: Приток; Out: Отток; 6 m: 6 м).
превышающим 200-300 %.
Обычно используются кислородные конусы или оксигенаторы шахтного типа. Принцип является одинаковым. Вода и чистый кислород смешиваются под давлением, которое обеспечивает переход кислорода в воду. В кислородном конусе давление обеспечивается насосом, обычно создающим в конусе давление около 1,4 бар. Подача воды в конус под напором потребляет много кислорода. В оксигенаторах шахтного типа напор достигается путем углубления в землю трубы в форме петли, например, на глубину 6 метров, и подачи кислорода в нижней точке этой петли. Давление вышерасположенного водяного столба, в данном случае, 0,6 бар, обеспечивает переход кислорода в воду. Преимуществом шахтных оксигенаторов являются низкие расходы на перекачивание воды, но их установка является сложной и более дорогостоящей.

Смотрите также

УЗВ

Техника и инвентарь в аквакультуре

Выращивание рыбы

 

arktikfish.com

ОКСИГЕНАТОРЫ

Подробности

Просмотров: 7208


Известно, что воздух является смесью газов, в которой содержится 21% кислорода. Ес-
ли применить вместо воздуха технический кислород, в котором содержится около 95%
кислорода, то в соответствии с уравнением 61 при давлении, равном атмосферному, рав-
новесное насыщение воды вырастет в 4,5 раза за счет увеличения парциального давления
кислорода. С увеличением давления смеси газов Р произойдет дальнейший рост равновес-
ного насыщения воды кислородом. При содержании азота в смеси газов на уровне 5% его
161
равновесное насыщение при атмосферном давлении снизится в 15,5 раз, что гарантирует
его безопасную концентрацию в воде.
В основу работы оксигенатора положен принцип насыщения воды техническим кисло-
родом при атмосферном или повышенном давлении. Получение концентраций кислорода
в воде, равных 500% и более от равновесного насыщения, не представляет технических
трудностей. Верхний предел насыщения кислородом ограничивается только соображе-
ниями целесообразности.
Перенасыщение воды кислородом решает ряд практических задач рыбоводства. Благо-
даря применению кислорода достигнуты значительные успехи в деле транспортировки на
дальние расстояния живой икры, молоди и товарной рыбы, а также других водных объек-
тов. В замкнутых системах благодаря оксигенации достигаются значительные плотности
посадки рыбы 100 - 120 кг/м3, экономится энергия на циркуляцию воды, снижается расход
свежей воды.
Весьма перспективно использование оксигенаторов при выращивании рыбы в садках,
размещенных в сбросных каналах электростанций. При повышении летних температур в
канале до 30 - 35 оС содержание кислорода в воде в ночные часы падает до 2 - 3 мг/л, что
вызывает массовую гибель рыбы. Избежать этого возможно путем оксигенации воды с
использованием технического кислорода.


В настоящее время разработано несколько конструкций оксигенаторов, изучены возмож-
ности их использования в практике рыбоводства, накоплен опыт, позволяющий совершен-
ствовать эти аппараты. Из всего многообразия конструкций требованиям индустриального
рыбоводства наиболее полно отвечают оксигенаторы типа оросительных колонн
(рис.38). Эти оксигенаторы представляют собой вертикальные герметичные емкости. В
верхнюю часть емкости, занятую газообразным кислородом, непрерывно подается вода,
предназначенная для насыщения кислородом. Уровень равновесного насыщения воды ки-
слородом в баллоне оксигенатора определяется суммой факторов: парциальным давлени-
ем кислорода в газовой подушке оксигенатора, давлением внутри сосуда, температурой и
соленостью воды. Фактическое насыщение воды кислородом на выходе из оксигенатора
практически всегда ниже равновесного насыщения, так как для достижения равновесного
насыщения требуется более длительное время пребывания воды в оксигенаторе, что неце-
лесообразно.


Рис.38. Схема оксигенатора в виде оросительной колонны.
Количественное содержание кислорода в газовой подушке оксигенатора изменяется в
процессе функционирования. Если содержание кислорода в подаваемом в оксигенатор га-
зе составляет 90 - 95%, то с течением времени содержание других газов в газовой подушке
162
оксигенатора увеличивается, снижая тем самым парциальное давление кислорода. Другие
газы, главным образом азот, выделяются из проточной воды. Их выделение обусловлено
все тем же законом Генри-Дальтона. Вода, насыщенная азотом и другими газами пропор-
ционально их давлениям в атмосфере, попадает в емкость оксигенатора, где парциальное
давление азота и других газов, кроме кислорода, незначительно. Разница парциальных
давлений газа в воде и в газовой подушке создает условие для дегазации воды. Таким об-
разом, происходит увеличение парциального давления азота в газовой подушке оксигена-
тора. Периодический выпуск части газовой подушки с заменой ее техническим кислоро-
дом называется вентиляцией. Вентиляция способствует поддержанию более высокого
уровня концентрации кислорода в воде на выходе из оксигенатора.
Конструкция оксигенатора в первую очередь предусматривает решение проблемы соз-
дания в емкости достаточной поверхности контакта между водой и газом и достаточного
времени контактирования, чтобы при минимальных энергетических затратах получить
требуемый уровень концентрации кислорода в воде.
Проблема создания достаточного контакта между газом и водой решается тремя спосо-
бами,
1 Путем использования разветвленной контактной поверхности, создаваемой инертным
материалом, загружаемым в емкость;
2 Путем разделения потока воды на струи с помощью решеток с отверстиями.
3 Создание поверхности контакта за счет пузырей кислорода, распыляемого в воде.
Первый способ приемлем при чистой воде, исключающей выпадение осадка на кон-
тактной поверхности. Накопление осадка или грязи требует мероприятий по их удалению,
что не всегда приемлемо в практике рыбоводства.
При использовании второго способа создания контактной поверхности - газ/вода, нако-
пление грязи и механических примесей не создает проблемы при эксплуатации, но в
меньшей степени, чем в оксигенаторах с загрузкой инертным материалом. В оксигенато-
рах, построенных как струйные, процесс насыщения идет как за счет разделения потока на
струи, так и за счет появления пузырей кислорода при падении струй на поверхность во-
ды.
Типовая схема системы водоснабжения рыбоводных бассейнов, с использованием оксиге-
натора конструкции И.В.Проскуренко, приведена на рис.39. Подача воды в оксигенатор
осуществляется под избыточным давлением, создаваемым либо насосом, как на рис.39,
либо с помощью напорной емкости. Избыточное давление в емкости оксигена-тора не-
обходимо для повышения до необходимого уровня концентрации кислорода на выходе из
оксигенатора. Сама конструкция оксигенатора не создает значительного гидравлического
сопротивления, поэтому на выходе из него устанавливается вентиль подпора ВП.
Снижение концентрации кислорода в воде на выходе из оксигенатора достигается с
помощью отпирания вентиля обвода ВО, либо путем снижения давления в емкости окси-
генатора при отпирании вентиля подпора ВП.
Стабильность поддержания концентрации кислорода на выходе зависит от стабильно-
сти высоты газовой подушки в баллоне оксигенатора. В процессе работы оксигенатора
высота газовой прослойки непрерывно уменьшается за счет потребления кислорода водой.
Стабильность границы раздела газ/вода поддерживается автоматическим регулятором
уровня РУ, который периодически открывает соленоидный вентиль СВ, установленный на
трубопроводе подачи газообразного кислорода.

Рис.39. Типовая схема включения оксигенатора: РУ - регулятор уровня; СВ - соленоид-
ный вентиль; ВГ -вентиль выпуска газа; ВО -вентиль обвода; ВП -вентиль подпора.
При открытом вентиле СВ порция кислорода поступает в емкость оксигенатора, снижая
уровень воды до уровня срабатывания регулятора, по сигналу которого закрывается соле-
ноидный вентиль. Давление газообразного кислорода должно превышать давление, созда-
ваемое в емкости оксигенатора насосом, подающим воду. При использовании насосов с
напором 20 м давление кислорода должно быть в пределах 0,3 - 0,4 МПа.
В верхней части баллона оксигенатора устанавливается вентиль ВГ, используемый при
запуске оксигенатора и для его продувки в процессе работы.
При стабильных условиях работы достаточно однократно запустить оксигенатор в дейст-
вие и контролировать периодически концентрацию кислорода в бассейне. Работа оксиге-
натора автоматизирована. Нестабильность работы может быть вызвана внешними причи-
нами: отсутствием или изменением протока воды, падением давления кислорода, захватом
воздуха насосом. Воздух, захваченный насосом, накапливаясь в оксигенаторе, снижает
парциальное давление кислорода, что способствует снижению концентрации кислорода
на выходе.
Подача в бассейны воды, пересыщенной кислородом, выполняется под поверхность во-
ды. Это позволяет избежать нерациональных потерь кислорода из-за его диффузии в воз-
дух. Вода в бассейне быстро перемешивается, нивелируя зоны с повышенной концентра-
цией кислорода.
Использование оксигенаторов в рыбоводных хозяйствах связано с наличием источни-
ков технического кислорода, которые условно можно разделить на четыре категории:
1 Внутрихозяйственные системы централизованного снабжения кислородом;
2 Снабжение кислородом путем доставки его в баллонах и реципиентах;
3 Снабжение жидким кислородом с последующей его газификацией в газификаторах на
месте использования;
4 Получение газообразного кислорода на месте использования с помощью установок,
работающих по принципу молекулярного сита.
Все четыре варианта получения технического кислорода нашли свое применение на
практике. Выбор варианта зависит от технических условий проектирования рыбоводного
хозяйства и, если существует выбор, от технико-экономической целесообразности. С точ-
ки зрения простоты обслуживания, надежности и безопасности на первом месте стоят ус-
тановки с молекулярным разделением воздуха на кислород и азот.
164
Опыт практической работы с оксигенаторами на установках с замкнутым циклом водо-
обеспечения позволил классифицировать причины отказов оксигенаторов и разработать
конструкцию, максимально отвечающую требованиям рыбоводного процесса. В этой кон-
струкции сведена к минимуму возможность сбоя работы оксигенатора за счет накопления
мусора и грязи. При конструировании учтена также степень безопасности прибора. Объем
и давление в емкости оксигенаторов разных типоразмеров подобраны таким образом, что-
бы сосуд не подлежал регистрации в органах котлонадзора, а только регистрации пред-
приятием, осуществляющим его эксплуатацию.
Разработана серия оксигенаторов, перекрывающая потребности по расходу воды от 15
до 1000 м3/час. Аппараты поставляются как готовые изделия, оснащенные приборами ав-
томатического управления и устанавливаемые на собственные опоры без подготовки фун-
дамента (табл.40).
Таблица 40


Устройство оксигенаторов производительностью от 15 до 250 м3/час приведено на
рис.40, оксигенаторов производительностью от 400 до 1000 м3/час - на рис.41.
ВЫБОР ОКСИГЕНАТОРА производится по трем параметрам: требуемая производи-
тельность оксигенатора по кислороду, кг О2/час, температура воды, оС и напор воды, соз-
даваемый на входе в оксигенатор, кг/см2. Концентрация кислорода в пресной воде на вы-
ходе оксигенатора данной конструкции в функции давления в корпусе оксигенатора и
температуры воды приведена в виде графиков на рис.42.
Решение задачи рассматривается на примере: в бассейне содержится рыба при темпе-
ратуре воды 25 оС, потребности которой в кислороде составляют G = 6 кг О2/час; напор
воды в подводящем трубопроводе равен 10 м или 1 кг/см2.

Рис.40. Устройство оксигенатора производительностью 250 м3/час: 1 - корпус; 2 - пат-
рубок для подвода воды; 3 - основание; 4 - вентиль выпуска грязи; 5 - патрубок для отвода
насыщенной воды; 6 - соленоидный клапан; 7 - вентиль на вводе кислорода; 8 - датчик ре-
гулятора уровня; 9 - блок управления регулятора уровня; 10 - манометр; 11 - вентиль вы-
пуска газа.
Какой типоразмер оксигенатора нужно поставить на входе в бассейн?
Решение: принимаем напор в оксигенаторе равным 90% от напора в трубопроводе или
0,9 кг/см2. С помощью номограммы на рис.42 по давлению в оксигенаторе 0,9 кг/см2 и
температуре воды 25 оС находим значение концентрации кислорода на выходе из оксиге-
натора С = 0,045 кг О2/м3.
Потребность в расходе воды
Q = G / С = 6,0 / 0,045 = 133 м3/час.
Выбираем ближайший типоразмер - 06.

Рис.41. Устройство оксигенатора производительностью от 400 до 1000 м3/час: 1 - корпус; 2 -
горловина; 3 - лаз; 4 - входной патрубок для воды; 5 - выходной патрубок для воды; 6 - выпуск
шлков; 7 - колонка уровнемера; 8 - блок управления регуляторов уровня; 9 - вентиль на вводе
кислорода; 10 - соленоидный клапан; 11- манометр; 12- выпуск газа; 13 - предохранительный
клапан.

Рис.42. Номограмма: концентрация кислорода в воде на входе оксигенатора при нулевой
входной концентрации в функции давления и температуры.

biblio.arktikfish.com

Безнапорный оксигенатор

Цена договорная

Безнапорный оксигенатор  работает при небольшом перепаде давления 50-100 см водяного столба. Основное преимущество оксигенатора- не требуют электрической энергии и давления подающих насосов.

Для нормальной работы устройства необходимо подать поток воды с высоты 50-100 см над поверхностью воды в бассейне. Наибольшая эффективность устройства достигается при установке его в каждый бассейн. Эффективность определяется потоком воды и перепадом высоты подающего лотка.

 

Оксигенаторы производятся двух видов: с пропускной способностью 15 м3/час  и до 30 м3/час.  

Технические характеристики

Модель 15 м3/час

Диаметр присоединительных патрубков   

110 мм

Габаритный размер

1410мм*569мм

Пропускная способность

до 15м3

Минимальный перепад уровня воды

50см

Модель 30 м3/час

Диаметр присоединительных патрубков   

110 мм

Габаритный размер

1700мм*830мм

Пропускная способность

до 30 м3/час

Минимальный перепад уровня воды              

50см

xn--31-dlct3d.xn--p1ai

Генератор кислорода для аквариума своими руками

Этот самодельный генератор кислорода может понадобиться лишь иногда: при лечении и адаптации рыб после продолжительной транспортировки. Однако не вредно всегда иметь его под рукой.

Генератор кислорода для аквариума своими руками  

Очень простой в исполнении генератор кислорода для аквариума

Зачем аквариумисту может понадобиться генератор кислорода?

    Чтобы оказать экстренную помощь рыбкам. Рыбы могут испытывать опасное для жизни кислородное голодание в целом ряде случаев:

   Помочь таким рыбам можно, если поднять содержание растворенного в воде кислорода до уровня, близкому к предельному насыщению. А сделать это можно аэрируя воду чистым кислородом. Кислород легко получить из аптечной 3% перекиси водорода, вот так:

    Количество вырабатываемого кислорода зависит от величины поверхности контакта перекиси с катализатором. Проще говоря, чем больше гвоздик, тем больше будет кислорода, но тем быстрее израсходуется запас перкиси. Если мы хотим максимально быстро насытить воду кислородом, то используем большой катализатор, как те шурупчики, что показаны на фото 1. Для продолжительной умеренной падачи нужен лишь небольшой обрубок от такого шурупа.
Меры безопасности: При эксплуатации такого генератора надо быть уверенным, что отверстие в крышечке затычке не засорилось и кислород свободно через него проходит.
   
Из этого генератора кислорода легко получается устройство для долговременной дозированной подачи перекиси водорода в аквариум, которое отчасти может заменить собой знаменитый оксидатор. Для этого надо убрать воздуховодную трубочку, а пузырек закрепить в аквариуме горлышком вниз. Образующийся в пузырке кислород будет выдавливать перекись через маленькое отверстие в крышке-затычке, а винтовая крышка будет страховать от того, чтобы затычка случайно не выпала и весь запас перекиси разом не оказался в аквариуме. Выходное отверстие в крышке-затычке надо обязательно защитить от засорения кусочком легко проницаемого поролона. Если перекись не сможет сквозь него проходить в аквариум, то пузырек может взорваться!  Именно поэтому в пузырек нельзя заливать перекись водорода крепче 3% и при работе с этим устройством необходимо соблюдать осторожность.

О самодельном генераторе кислорода на Аквариумке

 

Автор: 

В. Ковалёв 21 02 2018

aquariumok.ru

Термоакустический генератор из пивной банки своими руками

Здравствуйте, уважаемые читатели и самоделкины!
В данной статье Игорь, автор YouTube канала "Игорь Белецкий" расскажет Вам, как сделать очень интересный генератор из пивной банки, пробирки и сухого горючего. Этот эффект будет очень интересно показать школьникам.

Вот так он работает.


Материалы.
- Жестяная банка
- Стеклянная пробирка
- Губка для посуды
- Стальная вата
- Вода
- Отрезок пенопласта
- Пьезоэлементы
- Светодиоды
- Скотч
- Сухое горючее.

Инструменты, использованные автором.
- Газовая горелка, или зажигалка
- Ножницы
- Ножницы по металлу.

Процесс изготовления.
Итак, Игорь подобрал большую жестяную банку от пива. И вырезал крышку.


Также нашел пробирку длиной 15 сантиметров.

Из тонкой стальной ваты сделал вот такой комочек, и вставил в пробирку, но не до конца.

От обычной кухонной тряпки отрезал кусочек.


Затем смочил его в воде, это нужно для охлаждения части пробирки.

Теперь просто намотал полоску на пробирку.

Затем поджег сухое горючее, и нагрел пробирку возле вставки из стальной ваты. И эта нехитрая конструкция начала гудеть!

Теперь нужно вырезать из пенопласта диск, по размеру подходящий к банке. А также в центре диска сделать отверстие для пробирки, и вставить ее в крышку.

Игорь собирает конструкцию, обматывает тканью пробирку.-

Итак, генератор готов и запущен, вибрации от пробирки передаются внутрь банки, что вызывает вибрации стенок.


К обычным пьезоэлементам Игорь припаял светодиоды. При ударе по пьезоэлементу светодиод загорается.

Затем автор приклеил три элемента к банке при помощи обычного скотча.

Получается вот такая конструкция, Игорь поджигает сухое горючее, и светодиоды начинают светиться.

В темноте отлично светится!

Если у Вас есть интересные идеи, мысли, задумки, наблюдения, изобретения или знаете крутой физический эффект, но руки не доходят их воплотить, присылайте Игорю на почту и он постарается их проверить, поможет разобраться, даст совет, или снимет ролик по Вашей теме. Также у Игоря есть свой сайт.
Спасибо Игорю за оригинальный и интересный эксперимент!

Всем удачи, и интересных самоделок!


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о