Можно ли сделать из электродвигателя генератор: Самодельный генератор из двигателя от стиральной машины

Содержание

Переделка автомобильного генератора в мощный электродвигатель


Автомобильные генераторы, благодаря своей конструкции, имеют малые размеры и очень высокую мощность. Казалось бы, такая кроха может запросто выдать в среднем 2000 Вт мощности (бывают модели и до 5 кВт).
Генератор не может работать как электродвигатель, если просто приложить к нему напряжение. Чтобы превратить его в малогабаритный, мощный мотор его необходимо доработать.

Переделываем генератора в мощный электродвигатель


В примере использовать модель на 95 Ампер. Снимаем пластиковый кожух с задней части генератора.

Под этим кожухом располагаются трехфазный мост выпрямительных диодов закрепленный на радиаторе. И щеточный узел с контроллером регулировки выходного напряжения.

Откручиваем радиатор с диодами. Возможно придется поработать кусачками, чтобы все можно было быстро удалить.

В этой модели щетки и котроллер имеют один пластиковый корпус.

Отпилим щетки от контроллера.

Сам генератор построен по типу коллекторного двигателя. Имеет 6 выводом соответственно от трех обмоток на статоре.

Чтобы включить обмотки «треугольником» нужно соединить их последовательно между собой.

В итоге получился обыкновенный коллекторный, трехфазный двигатель 12 В и мощностью порядка 1,5 кВт.
Для управления им можно использовать контроллер от велосипеда, который предназначен для управления мотор-колесом. Купить его можно на Али Экспресс - http://ali.pub/4aplqd
Напряжение может быть любое, все они рассчитаны на напряжение не ниже 12 В. А вот мощность контроллера должна быть не ниже 1,5 кВт.

Чтобы запустить генератор как двигатель, необходимо на его коллектор подать постоянное напряжение. Для этого устанавливаем на место щеточный узел и подаем на него постоянное напряжение 12 В.

Ток, конечно большой, но его можно уменьшить в зависимости от требуемой мощности.

Подключаем контроллер к двигателю и к аккумулятору 12 В.

Ручкой управления регулируем обороты вала двигателя.
Длаее такой мотор можно установить хоть на багги, хоть на велосипед. 1,5 кВт мощности хватит на все.

Смотрите видео


В видеоролике вы можете наглядно убедится о скорости и мощности багги, построенного на двигателе из автомобильного генератора.

Как сделать электрогенератор из электродвигателя, разбираем подробно этапы

Ответ на вопрос, как сделать самостоятельно электрогенератор из электродвигателя, основывается на знании устройства этих механизмов. Основная задача заключается в преобразовании двигателя в машину, выполняющую функции генератора. При этом следует продумать способ, как весь этот узел будет приводиться в движение.

Где используется генератор

Оборудование данного вида находит применение в совершенно разных областях. Это может быть промышленный объект, частное или загородное жилье, стройплощадка, причем любых масштабов, гражданские здания разного целевого использования.

Одним словом, совокупность таких узлов, как электрогенератор любого типа и электродвигатель, позволяют реализовать следующие задачи:

  • Резервное электроснабжение;
  • Автономная подача электроэнергии на постоянной основе.

В первом случае речь идет о страховочном варианте на случай возникновения опасных ситуаций, таких, как перегрузка сети, аварии, отключения и прочее. Во втором случае электрогенератор разнотипный и электродвигатель позволяют получить электричество в местности, где отсутствует централизованная сеть. Наряду с этими факторами присутствует еще одна причина, по которой рекомендуется использование автономного источника электроэнергии – это необходимость подачи стабильного напряжения на вход потребителя. Подобные меры нередко принимаются, когда необходимо ввести в работу оборудование с особо чувствительной автоматикой.

Особенности устройства и существующие виды

Чтобы определиться с тем, какой электрогенератор и электродвигатель выбрать для реализации поставленных задач, следует представлять себе, в чем заключается разница между существующими видами автономного источника энергоснабжения.

Бензиновые, газовые и дизельные модели

Основное отличие – тип топлива. С этой позиции различают:

  1. Бензиновый генератор.
  2. Дизельный механизм.
  3. Устройство на газу.

В первом случае электрогенератор и содержащийся в конструкции электродвигатель по большей части используется для обеспечения электроэнергией на короткие сроки, что обусловлено экономической стороной вопроса ввиду высокой стоимости бензина.

Преимущество дизельного механизма заключается в том, что на его обслуживание и эксплуатацию потребуется значительно меньшее количество топлива. Дополнительно дизельный электрогенератор автономного типа и электродвигатель в нем будут работать длительный период времени без отключений благодаря большим ресурсам двигателя.

Устройство на газу является отличным вариантом на случай организации постоянного источника электроэнергии, так как топливо в данном случае всегда под рукой: подключение к газовой магистрали, использование баллонов. Поэтому стоимость эксплуатации такого агрегата будет ниже ввиду доступности топлива.

Основные конструктивные узлы такой машины тоже отличаются по исполнению. Двигатели бывают:

  1. Двухтактные;
  2. Четырехтактные.

Первый вариант устанавливается на устройства меньшей мощности и габаритов, тогда как второй – используется на более функциональных аппаратах. В генераторе имеется узел – альтернатор, другое его название «генератор в генераторе». Существует два его исполнения: синхронный и асинхронный.

По роду тока различают:

  • Однофазный электрогенератор и, соответственно, электродвигатель в нем;
  • Трехфазное исполнение.

Последний из названных вариантов рекомендуется приобретать в случае, когда пользователь планирует подключать к нему трехфазные потребители. Их преимущество заключается в возможности питать также и однофазную технику.

Чтобы понять, как сделать электрогенератор из асинхронного электродвигателя, важно понимать принцип действия этого оборудования. Так, основа функционирования заключается в преобразовании разных видов энергий. В первую очередь происходит переход кинетической энергии расширения газов, возникающих при сгорании топлива, в механическую. Это происходит с непосредственным участием кривошипно-шатунного механизма при вращении вала двигателя.

Преобразование механической энергии в электрическую составляющую происходит посредством вращения ротора альтернатора, в результате чего образуется электромагнитное поле и ЭДС. На выходе после стабилизации выходное напряжение попадает к потребителю.

Делаем источник электроэнергии без узла привода

Наиболее распространенным способом для реализации такой задачи является попытка организовать энергоснабжение посредством асинхронного генератора. Особенностью данного метода является приложение минимума усилий в плане монтажа дополнительных узлов для корректной работы такого устройства. Это обусловлено тем, что данный механизм функционирует по принципу асинхронного двигателя и продуцирует электроэнергию.

Смотрим видео, безтопливный генератор своими силами:

При этом ротор вращается с намного большей скоростью, чем смог бы выдавать синхронный аналог. Сделать электрогенератор из асинхронного электродвигателя своими руками вполне можно, не используя при этом дополнительных узлов или особых настроек.

В результате принципиальная схема устройства останется практически нетронутой, но появится возможность обеспечить электроэнергией небольшой объект: частный или загородный дом, квартиру. Применение таких устройств довольно обширно:

Чтобы организовать действительно автономный источник энергоснабжения, электрогенератор без приводящего в работу двигателя должен функционировать на самовозбуждении. А это реализуется посредством подключения конденсаторов в последовательном порядке.

Смотрим видео, генератор своими руками, этапы работ:

Другая возможность выполнить задуманное – использовать двигатель Стирлинга. Его особенностью является преобразование тепловой энергии в механическую работу. Другое название такого узла – двигатель внешнего сгорания, а если говорить точнее, исходя из принципа работы, то, скорее, двигатель внешнего нагрева.

Это обусловлено тем, что для эффективного функционирования устройства требуется значительный перепад температур. В результате роста этой величины повышается и мощность. Электрогенератор на двигателе внешнего нагрева Стирлинга может работать от любого источника тепла.

Последовательность действий при самостоятельном изготовлении

Чтобы превратить двигатель в автономный источник электроснабжения, следует несколько изменить схему, подключив конденсаторы к обмотке статора:

Схема включения асинхронного двигателя

При этом будет протекать опережающий емкостной ток (намагничивающий). В результате образуется процесс самовозбуждения узла, а величина ЭДС соответственно изменяется. На этот параметр в большей мере влияет емкость подключенных конденсаторов, но нельзя забывать и о параметрах самого генератора.

Чтобы устройство не грелось, что обычно является прямым следствием неправильно подобранных параметров конденсаторов, нужно руководствоваться специальными таблицами при их выборе:

Эффективность и целесообразность

Прежде, чем решать вопрос, где купить автономный электрогенератор без двигателя, нужно определить, действительно ли хватит мощности такого устройства для обеспечения потребностей пользователя. Чаще всего самодельные аппараты этого рода обслуживают маломощных потребителей. Если решено сделать своими руками электрогенератор автономный без двигателя, купить необходимые элементы можно в любом сервисном центре или магазине.

Но преимуществом их является сравнительно небольшая себестоимость, учитывая, что достаточно лишь немного изменить схему, подключив несколько конденсаторов подходящей емкости.  Таким образом, при наличии некоторых знаний можно соорудить компактный и маломощный генератор, который будет обеспечивать достаточным количеством электроэнергии для питания потребителей.

Генератор из электродвигателя

Трехфазные асинхронные электродвигатели – агрегаты, применяемые в промышленности, сельском хозяйстве для привода различных механизмов. Применяя специальную схему включения, такой электродвигатель можно использовать в качестве генератора.

Как использовать электродвигатель в качестве генератора

  • По стандартной схеме подключения асинхронного электродвигателя в качестве генератора номинальное напряжение и мощность электромотора равны напряжению и мощности двигателя. По формуле определяют реактивную мощность.
  • Индуктивная нагрузка на электродвигатель, снижающая коэффициент мощности, сразу же вызывает увеличение нужной емкости. Чтобы поддерживать напряжение в номинальной величине, следует значительно увеличить емкость конденсаторов, подключив дополнительные конденсаторы.
  • Частота вращения такого асинхронного генератора в номинальном режиме превышает величину скольжения на 10 процентов, и соответствуют синхронной частоте электродвигателя. Если это условие будет не выполнено, частота генерируемого напряжения будет отличаться от общепромышленной частоты, равной 50 Герц. И это обстоятельство приведет к неустойчивости работы при использовании альтернативного источника электроэнергии в виде электродвигателя, работающего в качестве генератора.
  • Наиболее опасны сниженные генерируемые частоты для индуктивных сопротивлений обмоток электрических двигателей, трансформаторов, так как могут привести к повышенному нагреву и выходу агрегатов из строя.
  • Генератор из электродвигателя можно сделать, используя асинхронный короткозамкнутый мотор существующей мощности без особых переделок. При этом мощность генератора определяют общей мощностью устройств, которые будут к нему подключены.
  • Данный способ является далеко не единственным. В настоящее время есть масса других способов, которые отлично используются на практике. Один из них – батарею конденсатора подключают к одной или же двум обмоткам электромотора-генератора.

Двухфазный режим работы генератора из электродвигателя

Когда нет необходимости получить трехфазное напряжение, можно ограничиться двухфазным и подключить электродвигатель в качестве генератора по другой схеме. Следует отметить, двухфазный режим значительно уменьшает емкость используемых конденсаторов и существенно снижает нагрузку на подключаемые механизмы, позволяя экономить топливо.

Просмотров: 1722

Дата: Воскресенье, 15 Декабрь 2013

Как сделать из электродвигателя генератор. Генератор из эл

Содержание:

Электротехника существует и действует по собственным законам и принципам. Среди них существует так называемый принцип обратимости, позволяющий изготовить генератор своими руками из асинхронного двигателя. Для решения этой задачи требуется знание и четкое понимание принципов работы данного оборудования.

Переход асинхронного двигателя в режим генератора

Прежде всего нужно рассмотреть принцип работы асинхронного двигателя, поскольку именно этот агрегат служит основой при создании генератора.

Электродвигатель асинхронного типа представляет собой устройство, превращающее электрическую энергию в механическую и тепловую. Возможность такого превращения обеспечивается , возникающей между обмотками статора и ротора. Главная особенность асинхронных двигателей заключается в разнице частоты вращения этих элементов.

Сами статор и ротор являются соосными деталями круглого сечения, изготовленные из стальных пластин с пазами внутри кольца. В целом наборе образуются продольные канавки, где располагается обмотка из медной проволоки. В роторе функцию обмотки выполняют прутки из алюминия, находящиеся в пазах сердечника и замкнутые с обеих сторон стопорными пластинами. Когда на обмотки статора подается напряжение, возникает вращающееся магнитное поле. В связи с разницей частоты вращения, между обмотками происходит наведение ЭДС, что приводит к вращению центрального вала.

В отличие от асинхронного электродвигателя, генератор, наоборот, осуществляет превращение тепловой и механической энергии в электрическую. Наибольшее распространение получили индукционные устройства, характеризующиеся наведением межобмоточной электродвижущей силы. Как и в случае с асинхронным двигателем, причиной наведения ЭДС становится разность оборотов магнитных полей статора и ротора. Отсюда вполне закономерно следует, исходя из принципа обратимости, что превратить асинхронный двигатель в генератор вполне возможно, за счет определенных технических реконструкций.

Каждый асинхронный электрогенератор представляет собой своего рода трансформатор, преобразующий механическую энергию вала электродвигателя в переменный ток. Это происходит, когда скорость вала начинает превышать синхронную и достигает 1500 об/мин и выше. Такая частота вращения достигается за счет приложения высокого крутящего момента. Его источником может стать двигатель внутреннего сгорания бензогенератора или крыльчатка ветряка.

При достижении синхронной частоты вращения, в работу включается конденсаторная батарея, в которой создается емкостный ток. Под его действием обмотки статора самовозбуждаются и в режиме генерирования начинает вырабатываться электрический ток. Надежная и устойчивая работа такого генератора, способного выдавать промышленную частоту 50 Гц, при соблюдении определенных условий:

  • Скорость вращения должна быть выше частоты работы самого электродвигателя на величину процента скольжения, составляющего 2-10%.
  • Скорость вращения генератора должна совпадать с синхронной скоростью.

Как сделать генератор

Имея определенную информацию, практические навыки работы в электротехнике, вполне возможно собрать работоспособный генератор своими руками из асинхронного двигателя. В первую очередь нужно вычислить реальную, то есть асинхронную частоту вращения электродвигателя, который будет использоваться в качестве генератора. Данную операцию можно выполнить с помощью тахометра.

Далее необходимо определить синхронную частоту электродвигателя, которая для генератора будет асинхронной. Как уже говорилось, здесь нужно учитывать величину скольжения, составляющую 2-10%. Например, в результате измерений была получена скорость вращения 1450 об/мин., следовательно, необходимая частота работы генератора составит 1479-1595 об/мин.

В качестве генератора для ветряка было решено переделать асинхронный двигатель. Такая переделка очень проста и доступна, поэтому в самодельных конструкциях ветрогенераторов часто можно видеть генераторы сделанные из асинхронных двигателей.

Переделка заключается в проточке ротора под магниты, далее магниты обычно по шаблону приклеивают к ротору и заливают эпоксидной смолой чтобы не отлетели. Так-же обычно перематывают статор более толстым проводом чтобы уменьшить слишком большое напряжение и поднять силу тока. Но этот двигатель не хотелось перематывать и было решено оставить все как есть, только переделать ротор на магниты. В качестве донора был найден трехфазный асинхронный двигатель мощностью 1,32Кв. Ниже фото данного электродвигателя.

асинхронный двигатель переделка в генератор Ротор электродвигателя был проточен на токарном станке на толщину магнитов. В этом роторе не применяется металлическая гильза, которую обычно вытачивают и надевают на ротор под магниты. Гильза нужна для усиления магнитной индукции, через нее магниты замыкают свои поля питая из под низа друг друга и магнитное поле не рассеивается, а идет все в статор. В этой конструкции применены достаточно сильные магниты размером 7,6*6мм в количестве 160 шт., которые и без гильзы обеспечат хорошую ЭДС.



Сначала, перед наклейкой магнитов ротор был размечен на четыре полюса, и со скосом были расположены магниты. Двигатель был четырех-полюсной и так как статор не перематывался на роторе тоже должно быть четыре магнитных полюса. Каждый магнитный полюс чередуется, один полюс условно "север", второй полюс "юг". Магнитные полюса сделаны с промежутками, так в полюсах магниты сгруппированы плотнее. Магниты после размещения на роторе были замотаны скотчем для фиксации и залиты эпоксидной смолой.

После сборки ощущалось залипание ротора, при вращение вала чувствовались залипания. Было решено переделать ротор. Магниты были сбиты вместе с эпоксидной смолой и снова размещены, но теперь они более менее равномерно установлены по всему ротору, ниже фото ротора с магнитами перед заливкой эпоксидной смолой. После заливки залипание несколько снизилось и было замечено что немного упало напряжение при вращении генератора на одних и тех же оборотах и немного подрос ток.


После сборки готовый генератор было решено покрутить дрелью и что нибудь к ниму подключить в качестве нагрузки. Подключалась лампочка на 220 вольт 60 ватт, при 800-1000 об/м она горела в полный накал. Так-же для проверки на что способен генератор была подключена лампа мощностью 1 Кв, она горела в полнакала и сильнее дрель не осилила крутить генератор.


В холостую на максимальных оборотах дрели 2800 об/м напряжение генератора было более 400 вольт. При оборотах примерно 800 об/м напряжение 160 вольт. Так-же попробовали подключить кипятильник на 500 ватт, после минуты кручения вода в стакане стала горячей. Вот такие испытания прошел генератор, который был сделан из асинхронного двигателя.


После для генератора была сварена стойка с поворотной осью для крепления генератора и хвоста. Конструкция сделана по схеме с уводом ветроголовки от ветра методом складывания хвоста, поэтому генератор смещен от центра оси, а штырек позади, это шкворень, на который одевается хвост.


Здесь фото готового ветрогенератора. Ветрогенератор был установлен на девятиметровую мачту. Генератор при силе ветра выдавал напряжение холостого хода до 80 вольт. К нему пробовали подсоединять тенн на два киловатта, через некоторое время тенн стал теплым, значит ветрогенератор все-таки имеет какую-то мощность.


Потом был собран контроллер для ветрогенератора и через него подключен аккумулятор на зарядку. Зарядка была достаточно хорошим током, аккумулятор быстро зашумел, как будто его заряжают от зарядного устройства.

Данные на шиндике электродвигателя говорили 220/380 вольт 6,2/3,6 А.значит сопротивление генератора 35,4Ом треугольник/105,5 Ом звезда. Если он заряжал 12-ти вольтовый аккумулятор по схеме включения фаз генератора в треугольник, что скорее всего, то 80-12/35,4=1,9А. Получается при ветре 8-9 м/с ток зарядки был примерно 1,9 А, а это всего 23 ватт/ч, да немного, но может я где-то ошибся.

Такие большие потери из-за высокого сопротивления генератора, поэтому статор обычно перематывают более толстым проводом чтобы уменьшить сопротивление генератора, которое влияет на силу тока, и чем выше сопротивление обмотки генератора, тем меньше сила тока и выше напряжение.

Для питания бытовых устройств и промышленного оборудования необходим источник электроэнергии. Выработать электрический ток возможно несколькими способами. Но наиболее перспективным и экономически выгодным, на сегодняшний день, является генерация тока электрическими машинами. Самым простым в изготовлении, дешёвым и надёжным в эксплуатации оказался асинхронный генератор, вырабатывающий львиную долю потребляемой нами электроэнергии.

Применение электрических машин этого типа продиктовано их преимуществами. Асинхронные электрогенераторы, в отличие от , обеспечивают:

  • более высокую степень надёжности;
  • длительный срок эксплуатации;
  • экономичность;
  • минимальные затраты на обслуживание.

Эти и другие свойства асинхронных генераторов заложены в их конструкции.

Устройство и принцип работы

Главными рабочими частями асинхронного генератора является ротор (подвижная деталь) и статор (неподвижный). На рисунке 1 ротор расположен справа, а статор слева. Обратите внимание на устройство ротора. На нём не видно обмоток из медной проволоки. На самом деле обмотки существуют, но они состоят из алюминиевых стержней короткозамкнутых на кольца, расположенные с двух сторон. На фото стержни видны в виде косых линий.

Конструкция короткозамкнутых обмоток образует, так называемую, «беличью клетку». Пространство внутри этой клетки заполнено стальными пластинами. Если быть точным, то алюминиевые стержни впрессовываются в пазы, проделанные в сердечнике ротора.

Рис. 1. Ротор и статор асинхронного генератора

Асинхронная машина, устройство которой описано выше, называется генератором с короткозамкнутым ротором. Тот, кто знаком с конструкцией асинхронного электродвигателя наверняка заметил схожесть в строении этих двух машин. По сути дела они ничем не отличаются, так как асинхронный генератор и короткозамкнутый электродвигатель практически идентичны, за исключением дополнительных конденсаторов возбуждения, используемых в генераторном режиме.

Ротор расположен на валу, который сидит на подшипниках, зажимаемых с двух сторон крышками. Вся конструкция защищена металлическим корпусом. Генераторы средней и большой мощности требуют охлаждения, поэтому на валу дополнительно устанавливается вентилятор, а сам корпус делают ребристым (см. рис. 2).


Рис. 2. Асинхронный генератор в сборе

Принцип действия

По определению, генератором является устройство, преобразующее механическую энергию в электрический ток. При этом не имеет значения, какая энергия используется для вращения ротора: ветровая, потенциальная энергия воды или же внутренняя энергия, преобразуемая турбиной либо ДВС в механическую.

В результате вращения ротора магнитные силовые линии, образованные остаточной намагниченностью стальных пластин, пересекают обмотки статора. В катушках образуется ЭДС, которая, при подсоединении активных нагрузок, приводит к образованию тока в их цепях.

При этом важно, чтобы синхронная скорость вращения вала немного (примерно на 2 – 10%) превышала синхронную частоту переменного тока (задаётся количеством полюсов статора). Другими словами, необходимо обеспечить асинхронность (несовпадение) частоты вращения на величину скольжения ротора.

Следует заметить, что полученный таким образом ток будет небольшим. Чтобы повысить выходную мощность необходимо увеличить магнитную индукцию. Добиваются повышения КПД устройства путём подключения конденсаторов к выводам катушек статора.

На рисунке 3 изображена схема сварочного асинхронного альтернатора с конденсаторным возбуждением (левая часть схемы). Обратите внимание на то, что конденсаторы возбуждения подключены по схеме треугольника. Правая часть рисунка – собственно схема самого инверторного сварочного аппарата.


Рис. 3. Схема сварочного асинхронного генератора

Существуют и другие, более сложные схемы возбуждения, например, с применением катушек индуктивности и батареи конденсаторов. Пример такой схемы показан на рисунке 4.


Рисунок 4. Схема устройства с индуктивностями

Отличие от синхронного генератора

Главное отличие синхронного альтернатора от асинхронного генератора в конструкции ротора. В синхронной машине ротор состоит из проволочных обмоток. Для создания магнитной индукции используется автономный источник питания (часто дополнительный маломощный генератор постоянного тока, расположенный на одной оси с ротором).

Преимущество синхронного генератора в том, что он генерирует более качественный ток и легко синхронизируется с другими альтернаторами подобного типа. Однако синхронные альтернаторы более чувствительны к перегрузкам и КЗ. Они дороже от своих асинхронных собратьев и требовательнее в обслуживании – необходимо следить за состоянием щёток.

Коэффициент гармоник или клирфактор асинхронных генераторов ниже, чем у синхронных альтернаторов. То есть они вырабатывают практически чистую электроэнергию. На таких токах устойчивее работают:

  • регулируемые зарядные устройства;
  • современные телевизионные приёмники.

Асинхронные генераторы обеспечивают уверенный запуск электромоторов, требующих больших пусковых токов. По этому показателю они, фактически, не уступают синхронным машинам. У них меньше реактивных нагрузок, что положительно сказывается на тепловом режиме, так как меньше энергии расходуется на реактивную мощность. У асинхронного альтернатора лучшая стабильность выходной частоты на разных скоростях вращения ротора.

Классификация

Генераторы короткозамкнутого типа получили наибольшее распространение, ввиду простоты их конструкции. Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.

На рисунке 5 для сравнения показаны два типа генераторов: слева на базе , а справа – асинхронная машина на базе АД с фазным ротором. Даже при беглом взгляде на схематические изображения видно усложнённую конструкцию фазного ротора. Привлекает внимание наличие контактных колец (4) и механизма щёткодержателей (5). Цифрой 3 обозначены пазы для проволочной обмотки, на которую необходимо подать ток для её возбуждения.


Рис. 5. Типы асинхронных генераторов

Наличие обмоток возбуждения в роторе асинхронного генератора повышает качество генерируемого электрического тока, однако при этом теряются такие достоинства как простота и надёжность. Поэтому такие устройства используются в качестве источника автономного питания только в тех сферах, где без них трудно обойтись. Постоянные магниты в роторах применяют в основном для производства маломощных генераторов.

Область применения

Наиболее часто встречается применение генераторных установок с короткозамкнутым ротором. Они недорогие, практически не нуждаются в обслуживании. Устройства, оборудованные пусковыми конденсаторами, обладают приличными показателями КПД.

Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания. С ними работают , их используют для мощных мобильных и .

Альтернаторы с трёхфазной обмоткой уверенно запускают трехфазный электродвигатель, поэтому часто используются в промышленных энергоустановках. Они также могут питать оборудование в однофазных сетях. Двухфазный режим позволяет экономить топливо ДВС, так как незадействованные обмотки находятся в режиме холостого хода.

Сфера применения довольно обширная:

  • транспортная промышленность;
  • сельское хозяйство;
  • бытовая сфера;
  • медицинские учреждения;

Асинхронные альтернаторы удобны для сооружения локальных ветровых и гидравлических электростанций.

Асинхронный генератор своими руками

Оговоримся сразу: речь пойдёт не об изготовлении генератора с нуля, а о переделывании асинхронного двигателя в альтернатор. Некоторые умельцы используют готовый статор от мотора и экспериментируют с ротором. Идея состоит в том, чтобы с помощью неодимовых магнитов сделать полюса ротора. Примерно так может выглядеть заготовка с наклеенными магнитиками (см. рис. 6):


Рис. 6. Заготовка с наклеенными магнитами

Вы наклеиваете магниты на специально выточенную заготовку, посаженную на валу электродвигателя, соблюдая их полярность и угол сдвига. Для этого потребуется не менее 128 магнитиков.

Готовую конструкцию необходимо подогнать к статору и при этом обеспечить минимальный зазор между зубцами и магнитными полюсами изготовленного ротора. Поскольку магнитики плоские, придётся их шлифовать или обтачивать, при этом постоянно охлаждая конструкцию, так как неодим теряет свои магнитные свойства при высокой температуре. Если вы сделаете всё правильно – генератор заработает.

Проблема состоит в том, что в кустарных условиях очень сложно изготовить идеальный ротор. Но если у вас есть токарный станок и вы готовы потратить несколько недель на подгонку и доработки – можете поэкспериментировать.

Я предлагаю более практичный вариант – превращение асинхронного двигателя в генератор (смотрите видео ниже). Для этого вам понадобится электромотор с подходящей мощностью и приемлемой частотой вращения ротора. Мощность двигателя должна быть минимум на 50% выше от требуемой мощности альтернатора. Если такой электромотор есть в вашем распоряжении – приступайте к переработке. В противном случае лучше купить готовый генератор.

Для переработки вам потребуется 3 конденсатора марки КБГ-МН, МБГО, МБГТ (можно брать другие марки, но не электролитические). Конденсаторы подбирайте на напряжение не менее 600 В (для трёхфазного двигателя). Реактивная мощность генератора Q связанная с емкостью конденсатора следующей зависимостью: Q = 0,314·U 2 ·C·10 -6 .

При увеличении нагрузки возрастает реактивная мощность, а значит, для поддержания стабильного напряжения U необходимо увеличивать ёмкость конденсаторов, добавляя новые ёмкости путём коммутации.

Видео: делаем асинхронный генератор из однофазного двигателя – Часть 1

Часть 2

На практике, обычно выбирают среднее значение, предполагая, что нагрузка не будет максимальной.

Подобрав параметры конденсаторов, подключите их к выводам обмоток статора так, как показано на схеме (рис. 7). Генератор готов.


Рис. 7. Схема подключения конденсаторов

Асинхронный генератор не требует особого ухода. Его обслуживание заключается в контроле состояния подшипников. На номинальных режимах устройство способно работать годами без вмешательства оператора.

Слабое звено – конденсаторы. Они могут выходить из строя, особенно тогда, когда их номиналы неправильно подобраны.

При работе генератор нагревается. Если вы часто подключаете повышенные нагрузки – следите за температурой устройства или позаботьтесь о дополнительном охлаждении.

Ответ на вопрос, как сделать самостоятельно электрогенератор из электродвигателя, основывается на знании устройства этих механизмов. Основная задача заключается в преобразовании двигателя в машину, выполняющую функции генератора. При этом следует продумать способ, как весь этот узел будет приводиться в движение.

Где используется генератор

Оборудование данного вида находит применение в совершенно разных областях. Это может быть промышленный объект, частное или загородное жилье, стройплощадка, причем любых масштабов, гражданские здания разного целевого использования.

Одним словом, совокупность таких узлов, как электрогенератор любого типа и электродвигатель, позволяют реализовать следующие задачи:

  • Резервное электроснабжение;
  • Автономная подача электроэнергии на постоянной основе.

В первом случае речь идет о страховочном варианте на случай возникновения опасных ситуаций, таких, как перегрузка сети, аварии, отключения и прочее. Во втором случае электрогенератор разнотипный и электродвигатель позволяют получить электричество в местности, где отсутствует централизованная сеть. Наряду с этими факторами присутствует еще одна причина, по которой рекомендуется использование автономного источника электроэнергии – это необходимость подачи стабильного напряжения на вход потребителя. Подобные меры нередко принимаются, когда необходимо ввести в работу оборудование с особо чувствительной автоматикой.

Особенности устройства и существующие виды

Чтобы определиться с тем, какой электрогенератор и электродвигатель выбрать для реализации поставленных задач, следует представлять себе, в чем заключается разница между существующими видами автономного источника энергоснабжения.

Бензиновые, газовые и дизельные модели

Основное отличие – тип топлива. С этой позиции различают:

  1. Бензиновый генератор.
  2. Дизельный механизм.
  3. Устройство на газу.

В первом случае электрогенератор и содержащийся в конструкции электродвигатель по большей части используется для обеспечения электроэнергией на короткие сроки, что обусловлено экономической стороной вопроса ввиду высокой стоимости бензина.

Преимущество дизельного механизма заключается в том, что на его обслуживание и эксплуатацию потребуется значительно меньшее количество топлива. Дополнительно дизельный электрогенератор автономного типа и электродвигатель в нем будут работать длительный период времени без отключений благодаря большим ресурсам двигателя.

Устройство на газу является отличным вариантом на случай организации постоянного источника электроэнергии, так как топливо в данном случае всегда под рукой: подключение к газовой магистрали, использование баллонов. Поэтому стоимость эксплуатации такого агрегата будет ниже ввиду доступности топлива.

Основные конструктивные узлы такой машины тоже отличаются по исполнению. Двигатели бывают:

  1. Двухтактные;
  2. Четырехтактные.

Первый вариант устанавливается на устройства меньшей мощности и габаритов, тогда как второй – используется на более функциональных аппаратах. В генераторе имеется узел – альтернатор, другое его название «генератор в генераторе». Существует два его исполнения: синхронный и асинхронный.

По роду тока различают:

  • Однофазный электрогенератор и, соответственно, электродвигатель в нем;
  • Трехфазное исполнение.

Чтобы понять, как сделать электрогенератор из асинхронного электродвигателя, важно понимать принцип действия этого оборудования. Так, основа функционирования заключается в преобразовании разных видов энергий. В первую очередь происходит переход кинетической энергии расширения газов, возникающих при сгорании топлива, в механическую. Это происходит с непосредственным участием кривошипно-шатунного механизма при вращении вала двигателя.

Преобразование механической энергии в электрическую составляющую происходит посредством вращения ротора альтернатора, в результате чего образуется электромагнитное поле и ЭДС. На выходе после стабилизации выходное напряжение попадает к потребителю.

Делаем источник электроэнергии без узла привода

Наиболее распространенным способом для реализации такой задачи является попытка организовать энергоснабжение посредством асинхронного генератора. Особенностью данного метода является приложение минимума усилий в плане монтажа дополнительных узлов для корректной работы такого устройства. Это обусловлено тем, что данный механизм функционирует по принципу асинхронного двигателя и продуцирует электроэнергию.

Смотрим видео, безтопливный генератор своими силами:

При этом ротор вращается с намного большей скоростью, чем смог бы выдавать синхронный аналог. Сделать электрогенератор из асинхронного электродвигателя своими руками вполне можно, не используя при этом дополнительных узлов или особых настроек.

В результате принципиальная схема устройства останется практически нетронутой, но появится возможность обеспечить электроэнергией небольшой объект: частный или загородный дом, квартиру. Применение таких устройств довольно обширно:

  • В качестве двигателя для ;
  • В виде небольших ГЭС.

Чтобы организовать действительно автономный источник энергоснабжения, электрогенератор без приводящего в работу двигателя должен функционировать на самовозбуждении. А это реализуется посредством подключения конденсаторов в последовательном порядке.

Смотрим видео, генератор своими руками, этапы работ:

Другая возможность выполнить задуманное – использовать двигатель Стирлинга. Его особенностью является преобразование тепловой энергии в механическую работу. Другое название такого узла – двигатель внешнего сгорания, а если говорить точнее, исходя из принципа работы, то, скорее, двигатель внешнего нагрева.

Это обусловлено тем, что для эффективного функционирования устройства требуется значительный перепад температур. В результате роста этой величины повышается и мощность. Электрогенератор на двигателе внешнего нагрева Стирлинга может работать от любого источника тепла.

Последовательность действий при самостоятельном изготовлении

Чтобы превратить двигатель в автономный источник электроснабжения, следует несколько изменить схему, подключив конденсаторы к обмотке статора:

Схема включения асинхронного двигателя

При этом будет протекать опережающий емкостной ток (намагничивающий). В результате образуется процесс самовозбуждения узла, а величина ЭДС соответственно изменяется. На этот параметр в большей мере влияет емкость подключенных конденсаторов, но нельзя забывать и о параметрах самого генератора.

Чтобы устройство не грелось, что обычно является прямым следствием неправильно подобранных параметров конденсаторов, нужно руководствоваться специальными таблицами при их выборе:

Эффективность и целесообразность

Прежде, чем решать вопрос, где купить автономный электрогенератор без двигателя, нужно определить, действительно ли хватит мощности такого устройства для обеспечения потребностей пользователя. Чаще всего самодельные аппараты этого рода обслуживают маломощных потребителей. Если решено сделать своими руками электрогенератор автономный без двигателя, купить необходимые элементы можно в любом сервисном центре или магазине.

Но преимуществом их является сравнительно небольшая себестоимость, учитывая, что достаточно лишь немного изменить схему, подключив несколько конденсаторов подходящей емкости. Таким образом, при наличии некоторых знаний можно соорудить компактный и маломощный генератор, который будет обеспечивать достаточным количеством электроэнергии для питания потребителей.


За основу был взят промышленный асинхронный двигатель переменного тока, мощностью 1,5 кВт с частотой вращения вала 960 об/мин. Сам по себе такой мотор изначально не может работать как генератор. Ему необходима доработка, а именно замена или доработка ротора.
Табличка с маркировкой двигателя:


Двигатель хорош тем, что у него везде где нужно стоят уплотнения, особенно у подшипников. Это существенно увеличивает интервал между периодическими техническими обслуживаниями, так как пыль и грязь никуда просто так попасть и проникнуть не могут.
Ламы у этого электродвигателя можно поставить на любую сторону, что очень удобно.

Переделка асинхронного двигателя в генератор

Снимаем крышки, извлекаем ротор.
Обмотки статора остаются родные, двигатель не перематывается, все остается как есть, без изменений.


Ротор дорабатывался на заказ. Было решено сделать его не цельнометаллическим, а сборным.


То есть, родной ротор стачивается до определенного размера.
Вытачивается стальной стакан и запрессовывается на ротор. Толщина скана в моем случае 5 мм.


Разметка мест для приклеивания магнитов была одной из самых сложных операций. В итоге методом проб и ошибок было решено распечатать шаблон на бумаге, вырезать в нем кружочки под неодимовые магниты – они круглые. И приклеить магниты по шаблону на ротор.
Основная загвоздка возникла в вырезании множественных кружочков в бумаге.
Все размеры подбираются сугубо индивидуально под каждый двигатель. Каких-то общих размеров размещения магнитов дать нельзя.


Неодимовые магниты приклеены на супер клей.


Была сделана сетка из капроновой нити для укрепления.


Далее обматывается все скотчем, снизу делается герметичная опалубка, герметизированная пластилином, а сверху заливная воронка из того же скотча. Заливается все эпоксидной смолой.


Смола потихоньку стекает сверху вниз.


После застывания эпоксидной смолы, снимаем скотч.


Теперь все готов к сборке генератора.


Загоняем ротор в статор. Делать это нужно особо осторожно, так как неодимовые магниты обладают огромной силой и ротор буквально залетает в статор.


Собираем, закрываем крышки.


Магниты не задевают. Залипания почти нет, крутится относительно легко.
Проверка работы. Вращаем генератор от дрели, с частотой вращения 1300 об/мин.
Двигатель подключен звездой, треугольником генераторы такого типа подключать нельзя, не будут работать.
Снимается напряжение для проверки между фазами.


Генератор из асинхронного двигателя работает отлично.Более подробную информацию смотрите в видеоролике.

Канал автора -

Рекомендуем также

Новый подход к производству энергии - Энергетика и промышленность России - № 10 (174) май 2011 года - WWW.EPRUSSIA.RU

Газета "Энергетика и промышленность России" | № 10 (174) май 2011 года

Современную цивилизацию невозможно представить без источников энергии. Средства транспорта, различные производства, освещение, отопление и многое другое – все это требует энергии. Сейчас ее получают, в основном, сжиганием органического топлива, гораздо меньшую часть – на атомных и гидроэлектростанциях и совсем ничтожную – за счет ветра, солнца, тепла земли и пр.

На энергетические нужды ежегодно безвозвратно расходуются миллионы тонн топлива. Отравляется окружающая среда, уродуется лицо планеты, отбираются земли из сельхозоборота.

Гидро- и атомная энергия воздействуют на природу еще хуже. Трудно даже оценить наносимый ими вред.

Остальные же источники порой даже не стоит рассматривать всерьез. Их эксплуатация слишком дорога, удельная мощность производства слишком мала, существует большая зависимость от состояния окружающей среды и т. д.

А человечеству с каждым годом требуется все большее количество энергии. Получается тупик.

Но давайте посмотрим внимательнее на суть вопроса. Что такое энергия и откуда она берется? Полного и четкого ответа на этот вопрос сегодня не может дать ни один человек.

Ведь на самом деле энергия существует вокруг нас, но при этом независимо от нас. По большому счету, мы не можем ее получать и не можем уничтожать. Человеку дано лишь переводить ее из одного вида в другой, однако общее ее количество при этом не меняется.

Собственно, это и есть закон сохранения энергии. Что бы мы ни делали, мы не можем нарушить равновесие в полномасштабном мире!

Воздействие электро­движущей силы

Переводить энергию из одного вида в другой проще всего в электрических устройствах. Электричество наиболее широко применяется и легко обратимо в любой другой вид энергии.

Для преобразования электрической энергии в механическую широко используются электродвигатели. Считается, что эти устройства имеют наивысший КПД, превышающий 80‑90 процентов, среди всех устройств, переводящих энергию в механическое движение.

Но так ли это?

Рассмотрим работу электродвигателя подробнее. При вращении ротора в его обмотке наводится, по закону Ленца, так называемая генераторная ЭДС, всегда направленная навстречу питающему напряжению. И эта электродвижущая сила очень велика. Она составляет до 95‑98 процентов от величины питающего двигатель напряжения.

То есть при напряжении источника питания двигателя 100 вольт 95 вольт уходят на бесполезную работу по уменьшению напряжения питания двигателя! Получается, что истинное напряжение питания всего 5 вольт! А практически приходится подавать в двадцать раз больше!

Подсчитаем мощность, потребляемую двигателем, при истинном и практически осуществляемом напряжении питания. При токе потребления 1 А истинная мощность будет всего 5 ватт, а практическая – 100! Механическая же мощность (КПД = 80 %) будет 80 ватт.

То есть мы имеем огромные резервы по повышению эффективности работы электродвигателей. И тот КПД, который указан во всех учебниках электротехники, – совершенно неправильный. Считать можно только полезно преобразуемые величины. При правильном подсчете мы получаем КПД всего около 5 процентов… Меньше, чем у паровоза.

Истинное значение КПД в электрических машинах не соотносится прямо пропорционально с их потребляемой и выходной мощностью. Этот вопрос очень сложен и ждет своего глубокого изучения. Ведь тут оказываются вовлеченными параметры, которые никогда прежде не учитывались.

Многие скажут, что это фантастика: невозможно получить большую энергию, чем подвели. Но это совсем не так. Были проведены большие теоретические исследования, поставлен ряд опытов, которые неопровержимо доказали: это не только возможно, но и очень легко достижимо!

По пути Громова

Уже разработаны десятки вариантов электродвигателей и генераторов с эффективностью, в десятки раз превышающей ту, что имеется у используемых сейчас агрегатов. Большое значение в этих работах сыграли труды Н. Н. Громова из Нижнего Новгорода – ныне, к сожалению, покойного. Он широко разрабатывал эту тему и опубликовал множество решений. К сожалению, почти никто не обратил на его труды внимания. Его решения были слишком смелы и отличались от известных в электротехнике.

Тем не менее оказалось, что задачу повышения энергоэффективности можно решить даже в рамках уже выпускаемых промышленностью конструкций электродвигателей и генераторов.

Была разработана общая теория построения данного класса устройств, согласно которой двигатель практически любого типа может стать сверхэффективным, а электрогенераторы смогут вырабатывать энергию, потребляя только ту ее часть, которая нужна для покрытия потерь на трение. То есть генератор, вырабатывающий сотни киловатт, будет потреблять только несколько киловатт.

Теория была подтверждена практически группой экспериментаторов из Болгарии. Они испытали тестовую модель генератора, ротор которого не тормозился при подключении нагрузки. При самых тщательных измерениях не удалось заметить увеличение потребляемой механической мощности.

Изобилие без затрат

При должном финансировании данных работ уже в течение нескольких лет можно создать основные типы промышленных электрогенераторов и электродвигателей для всех отраслей народного хозяйства, в том числе и транспорта. Можно начать производить индивидуальные энергоблоки для частных лиц. Выпускать электромобили без аккумуляторов, которые не требуют станций подзарядки, но при этом имеют неограниченный радиус действия. Оснащать на новых принципах любые типы судов и многие типы летательных аппаратов, даже космические корабли (есть разработки движителей и для них).

Следующий этап – постепенно выводить изношенные мощности АЭС, ТЭЦ, ГЭС. И в течение нескольких десятилетий можно будет плавно и безболезненно перейти на принципиально новую энергетику.

Автор рассказал только об очень небольшой части исследований в этой области. Предлагаемые им способы настолько просты, доступны, что почти все можно сделать без значительных затрат и дорогого оборудования. Материалы требуются самые обычные. Особых технологий тоже не требуется. Если, например, деньги, что мы пустили на мифическую термоядерную энергетику, потратить на новые устройства, то, возможно, человечество получит энергетическое изобилие в кратчайшие сроки.

В заключение хотелось бы отметить, что работа над принципиально иным подходом к энергообеспечению продолжается энтузиастами и сейчас. Так, несколько месяцев назад был построен и испытан простейший макет электродвигателя без противоЭДС. Выходная механическая мощность превысила потребляемую электрическую более чем в два раза. Теория была подтверждена практически, и на основе этих испытаний изобретатели разработали гораздо более совершенные конструкции.

Как сделать генератор из асинхронного двигателя (видео, схема 220В)

Данная задача требует выполнения ряда манипуляций, которые должны сопровождаться четким пониманием принципов и режимов функционирования такого оборудования.

Что собой представляет и как работает

Эл двигатель асинхронного типа – это машина, в которой происходит трансформация электрической энергии в механическую и тепловую. Такой переход становится возможным благодаря явлению электромагнитной индукции, которая возникает между обмотками статора и ротора. Особенностью асинхронных двигателей является тот факт, что частота вращения этих двух ключевых его элементов отличается.

Конструктивные особенности типичного эл двигателя можно видеть на иллюстрации. И статор, и ротор представляют собой соосные круглого сечения объекты, изготавливаются путем набора достаточного количества пластин из специальной стали. Пластины статора имеют пазы на внутренней части кольца и при совмещении образуют продольные канавки, в которые наматывается обмотка из медной проволоки. Для ротора, ее роль играют алюминиевые прутки, они также вставляются в пазы сердечника, но с обеих сторон замыкаются стопорными пластинами.

Во время подачи напряжения на обмотки статора, на них возникает и начинает вращаться электромагнитное поле. В связи с тем, что частота вращения ротора заведомо меньше, между обмотками наводится ЭДС и центральный вал начинает двигаться. Не синхронность частот связана не только с теоретическими основами процесса, но и с фактическим трением опорных подшипников вала, оно будет его несколько тормозить относительно поля статора.

Что такое электрический генератор?

Генератор представляет собой эл машину, преобразовывающую механическую и тепловую энергии в электрическую. С этой точки зрения он является устройством прямо противоположным по принципу действия и режиму функционирования к асинхронному двигателю. Более того, наиболее распространенным типом электрогенераторов являются индукционные.

Как мы помним из выше описанной теории, такое становится возможным только при разности оборотов магнитных полей статора и ротора. Из это следует один закономерный вывод (учитывая также принцип обратимости, упомянутый вначале статьи) – теоретически возможно сделать генератор из асинхронника, кроме того, это задача, решаемая самостоятельно за счет перемотки.

Работа двигателя в режиме генератора

Любой асинхронный электрогенератор используется в качестве некоего трансформатора, где механическая энергия от вращения вала двигателя, преобразуется в переменный ток. Такое становится возможным тогда, когда его скорость становится выше синхронной (порядка 1500 об/мин).  Классическую схему переделки и подключения двигателя в режиме электрогенератора с выработкой трехфазного тока можно легко собрать своими руками:

Чтобы достичь такой стартовой частоты вращения, необходимо приложить довольно большой крутящий момент (например, за счет подключения двигателя внутреннего сгорания в бензогенераторе или крыльчатки в ветряке). Как только частота вращения достигает значения синхронной, начинает действовать конденсаторная батарея, создающая емкостный ток. За счет этого происходит самовозбуждение обмоток статора и выработка электрического тока (режим генерирования).

Необходимым условием устойчивой работы такого электрогенератора с промышленной частотой сети 50 Гц, является соответствие его частотных характеристик:

  1. Скорость его вращения должна превышать асинхронную (частоту работы самого двигателя) на процент скольжения (от 2 до 10%),
  2. Значение скорости вращения генератора должно соответствовать синхронной скорости.

Как самостоятельно собрать асинхронный генератор?

Обладая полученными знаниями, смекалкой и умением работать с информацией, можно своими руками собрать/переделать работоспособный генератор из двигателя. Для этого необходимо совершить точные действия следующей последовательности:

  1. Вычисляется реальная (асинхронная) частота вращения двигателя, который планируется применить в качестве электрогенератора. Для определения оборотов на подключенном к сети агрегате можно использовать тахограф,
  2. Определяется синхронная частота двигателя, которая одновременно будет асинхронной для генератора. Здесь учитывается величина скольжения (2-10%). Допустим, измерения показали скорость вращения на уровне 1450 об/мин. Требуемая частота работы электрогенератора будет составлять:

nГЕН = (1,02…1,1)nДВ= (1,02…1,1)·1450 = 1479…1595 об/мин,

  1. Подбор конденсатора необходимой емкости (используются стандартные сравнительные таблицы данных).

На этом можно и поставить точку, но если требуется напряжение однофазной сети 220В, то режим функционирования такого устройства потребует внедрения в приведенную ранее схему понижающего трансформатора.

Виды генераторов на базе двигателей

Покупка штатного готового эл генератора – удовольствие отнюдь не из дешевых и вряд ли по карману практическому большинству наших сограждан. Прекрасной альтернативой может послужить самодельный генератор, его можно собрать при достаточных познаниях в области электротехники и слесарного дела. Собранное устройство может успешно использоваться в качестве:

  1. Электрогенератора с самозапиткой. Пользователь может своими руками получить устройство для выработки электроэнергии с длительным периодом действия вследствие самостоятельной подпитки,
  2. Ветрогенератора. В качестве движителя, необходимого для пуска двигателя, используется ветряк, который вращается под воздействием ветра,
  3. Генератора на неодимовых магнитах,
  4. Трехфазного бензогенератора,
  5. Однофазного маломощного генератора на двигателях электроприборов и т. д.

Переделка своими руками стандартного мотора в действующее генерирующее устройство – занятие увлекательное и очевидно экономящее бюджет. Таким образом можно переделать обычный ветряк, соединив его с двигателем для автономной выработки энергии.

Изготовление генератора для ветряка из асинхронного двигателя своими руками

Этапы

Создание самодельного ветрогенератора имеет два основных этапа:

  • изготовление ротора
  • создание генератора

Эти работы между собой не имеют практически ничего общего, так как надо сделать разные по сути и назначению узлы системы. Для изготовления того и другого элемента используются подручные механизмы и приспособления, которые можно использовать или переделать в необходимый узел. Один из вариантов создания генератора, часто используемый при изготовлении ветрогенератора — изготовление из асинхронного электродвигателя, которое наиболее удачно и качественно позволяет решить проблему. Рассмотрим вопрос подробнее:

Изготовление генератора из асинхронного двигателя

Асинхронный двигатель является наилучшей «заготовкой» для изготовления генератора. Он имеет для этого наилучшие показатели по устойчивости к короткому замыканию, менее требователен к попаданию пыли или грязи. Кроме того, асинхронные генераторы вырабатывают более «чистую» энергию, клирфактор (наличие высших гармоник) у этих устройств всего 2% против 15% у синхронных генераторов. Высшие гармоники способствуют нагреву двигателя и сбивают режим вращения, поэтому их малое количество является большим плюсом конструкции.

Асинхронные устройства не имеют вращающихся обмоток, что в значительной степени снимает возможность выхода их из строя или повреждения от трения или замыкания.

Также важным фактором является наличие на выходных обмотках напряжения в 220В или 380 В, что позволяет подключать приборы потребления прямо к генератору, минуя систему стабилизации тока. То есть, пока есть ветер, приборы будут работать точно так же, как от сети.

Единственное отличие от работы полного комплекса в прекращении работы сразу же после стихания ветра, тогда как аккумуляторы, входящие в комплект, какое-то время питают потребляющие устройства используя свою емкость.

Как переделать ротор

Единственным изменением, которое вносится в конструкцию асинхронного двигателя при переделывании его в генератор, является установка на ротор постоянных магнитов. Для получения большей силы тока иногда перематывают обмотки более толстым проводом, имеющим меньшее сопротивление и дающим лучшие результаты, но эта процедура не критична, можно обойтись и без нее — генератор будет работать.

Ротор асинхронного двигателя не имеет никаких обмоток или иных элементов, являясь, по сути, обычным маховиком. Обработка ротора производится в токарном станке по металлу, обойтись без этого никак нельзя. Поэтому при создании проекта надо сразу решить вопрос с техническим обеспечением работ, найти знакомого токаря или организацию, занимающуюся такими работами. Ротор надо уменьшить в диаметре на толщину магнитов, которые будут на него установлены.

Существует два способа монтажа магнитов:

  • изготовление и установка стальной гильзы, которая одевается на предварительно уменьшенный в диаметре ротор, после чего на гильзу крепятся магниты. Этот способ дает возможность увеличить силу магнитов, плотность поля, способствующую более активному образованию ЭДС
  • уменьшение диаметра только на толщину магнитов плюс необходимый рабочий зазор. Этот способ проще, но потребует установки более сильных магнитов, лучше всего — неодимовых, которые имеют намного большее усилие и создают мощное поле.

Установка магнитов производится по линиям конструкции ротора, т.е. не воль оси, а несколько смещенными по направлению вращения (на роторе эти линии хорошо видны). Магниты расставляются по чередованию полюсов и фиксируются на роторе с помощью клея (рекомендуется эпоксидная смола). После ее высыхания можно производить сборку генератора, в который отныне превратился наш двигатель, и переходить к испытательным процедурам.

Испытания вновь созданного генератора

Эта процедура позволяет выяснить степень работоспособность генератора, опытным путем определить скорость вращения ротора, необходимую для получения нужного напряжения. Обычно прибегают к помощи другого двигателя, например, электродрели с регулируемой частотой вращения патрона. Вращая ротор генератора с подключенным к нему вольтметром или лампочкой, проверяют, какие скорости необходимы для минимума и каков максимальный предел мощности генератора, чтобы получить данные, на основе которых будет создаваться ветряк.

Можно в испытательных целях подключить какой-либо прибор потребления (например, нагреватель или осветительное устройство) и убедиться в его работоспособности. Это поможет снять все возникающие вопросы и внести какие-либо изменения, если возникнет такая необходимость. Например, иногда возникают ситуации с «залипанием» ротора, не стартующего при слабых ветрах. Это происходит при неравномерном распределении магнитов и устраняется разборкой генератора, отсоединением магнитов и повторным их укреплением в более равномерной конфигурации.

По завершении всех работ в распоряжении появляется полностью рабочий генератор, который отныне нуждается в источнике вращения.

Изготовление ветряка

Для создания ветряка потребуется выбрать какой-либо из вариантов конструкции, которых имеется немало. Так, существуют горизонтальные или вертикальные конструкции ротора (в данном случае термин «ротор» обозначает вращающуюся часть ветрогенератора — вал с лопастями, приводимый в движение силой ветра). Горизонтальные роторы имеют более высокую эффективность и устойчивость в производстве энергии, но нуждаются в системе наведения на поток, которая, в свою очередь, нуждается в легкости вращения на валу.

Чем мощнее генератор, тем труднее его вращать и тем большее усилие должен развивать ветряк, что требует его больших размеров. При этом, чем крупнее ветряк, тем он тяжелее и обладает большей инерцией покоя, что образует замкнутый круг. Обычно используют средние значения и величины, дающие возможность образовать компромисс между размерами и легкостью вращения.

Вертикальные ветряки проще в изготовлении и не требовательны к направлению ветра. При этом, они имеют меньшую эффективность, так как ветер с одинаковой силой воздействует на обе стороны лопасти, затрудняя вращение. Для того, чтобы избежать этого недостатка, создано множество различных конструкций ротора, таких как:

  • ротор Савониуса
  • ротор Дарье
  • ротор Ленца

Известны ортогональные конструкции (разнесенные относительно оси вращения) или геликоидные (лопасти, имеющие сложную форму, напоминающую витки спирали). Все эти конструкции имеют свои достоинства и недостатки, основным из которых является отсутствие математической модели вращения того или иного вида лопастей, делающего расчет крайне сложным и приблизительным. Поэтому действуют методом проб и ошибок — создается экспериментальная модель, выясняются ее недостатки, с учетом которых изготавливается рабочий ротор.

Наиболее простая и распространенная конструкция — ротор Савониуса, но в последнее время в сети появляется множество описаний других ветрогенераторов, созданных на базе других видов.

Устройство ротора несложно — вал на подшипниках, на верхней части которого укреплены лопасти, которые под действием ветра вращаются и передают крутящий момент на генератор. Изготовление ротора осуществляется из доступных материалов, монтаж не требует чрезмерной высоты (обычно поднимают на 3-7 м), это зависит от силы ветров в регионе. Вертикальные конструкции почти не требуют ухода или обслуживания, что облегчает эксплуатацию ветрогенератора.

Рекомендуемые товары

Электродвигатель, используемый в качестве генератора

В = -N (dΦ / dt)

Электричество и магнетизм

Электродвигатель, используемый в качестве генератора

Практическая деятельность для 14-16

Демонстрация

Вы можете генерировать переменный ток с помощью двигателя с дробной мощностью.

Аппаратура и материалы

Техника безопасности и здоровья

Для удобства двигатель должен быть установлен на плате, как показано, с гнездами 4 мм для подключения к обмоткам ротора и статора.

Прочтите наше стандартное руководство по охране труда

Процедура

  1. Подсоединить обмотки якоря (ротора) к демонстрационному счетчику.
  2. Подключить обмотки возбуждения (статора) к низковольтному источнику питания.
  3. Установите напряжение питания 2 В постоянного тока. и включите
  4. Поверните якорь, вращая шкив на валу рукой.
  5. Измените направление вращения, чтобы увидеть разницу.
  6. Повторить без подачи напряжения на полевые клеммы.

Учебные заметки

  • Только маленькие динамо-машины имеют постоянные магниты для создания магнитного поля; у больших есть электромагниты (катушки которых обычно получают немного от собственного выходного тока динамо-машины).
  • Очень большой перем. генераторы на электростанциях называются генераторами переменного тока. В них совокупность катушек возбуждения вращается, приводимая в движение турбиной, и называется ротором. Катушки якоря, в которых генерируется выходное напряжение, удерживаются в раме вне ротора и остаются неподвижными; это статор.
  • Эта конструкция удобна для больших машин, поскольку не требует щеток, коммутатора или контактных колец для передачи большого выходного тока. Электромагниты вращающегося ротора питаются небольшим постоянным током, в котором они нуждаются, от небольшого d.c. динамо на том же вращающемся валу, что и большой генератор.
  • Динамо-машина, вращающаяся с постоянной скоростью с полевым магнитом, поддерживающим постоянную силу, создает постоянную разность потенциалов (ЭДС), как батарея элементов с хорошим поведением. Даже при отсутствии выходного тока динамо-машина все равно вырабатывает э.д.с. Готов водить ток. Когда вы позволяете ему управлять током, подключая что-либо к его выходным клеммам, величина тока зависит от сопротивления устройства, которое вы подключаете (и внутреннего сопротивления динамо-катушек).

Этот эксперимент прошел испытания на безопасность в апреле 2006 г.

  • Видео, демонстрирующее аналогичный эксперимент с электромагнитной индукцией:

Может ли электродвигатель работать как генератор?

ДА, но это можно сделать только в течение длительного времени с электродвигателем, который также предназначен для работы в качестве генератора, и если генератор будет работать параллельно с другим поколением, двигатель должен быть синхронным.

Я служил в ВМС США на подводной лодке электриком-атомщиком. Моя электрическая установка включает в себя электродвигатели-генераторы мощностью от 2 до 500 кВт. Когда конец переменного тока работал как двигатель переменного тока, конец постоянного тока был генератором постоянного тока, который подавал мощность на батарею субмарины, обратный ток, а конец постоянного тока становился двигателем постоянного тока, а двигатель переменного тока менял направление тока и работал как генератор переменного тока. Скорость и направление вращения электродвигателя-генератора переменного и постоянного тока с общим валом не менялись независимо от того, какой конец действовал как электродвигатель, а какой - как генератор.

Я лично эксплуатировал, ремонтировал и обслуживал эти мотор-генераторы в течение 3 лет своей жизни, поверьте мне, я знаю, о чем говорю. Единственное, что изменило направление тока, - это повышение или понижение сопротивления через реостаты.

Там, где вы не выполняете подключение, вы должны помнить о положительной и отрицательной клеммах генератора постоянного тока относительно напряжений на клеммах аккумулятора. Если положительный вывод машины постоянного тока составляет, например, 100 В постоянного тока, но напряжение положительного вывода аккумуляторной батареи равно 100.1 В постоянного тока, ток выйдет из клеммы батареи, через двигатель постоянного тока на противоположную клемму батареи и через кислоту, чтобы замкнуть цепь. Если при увеличении тока шунта в двигателе постоянного тока клеммы машины постоянного тока относительно батареи будут выше, и ток изменит направление и зарядит батарею.

Имейте в виду, что в каждом работающем электродвигателе есть действие генератора, и каждый генератор имеет действие двигателя (противодействие ЭДС). Двигатели переменного тока не требуют пускового сопротивления, поскольку полное сопротивление обмоток и частота переменного тока ограничивают пусковой ток при пуске.Однако для двигателей постоянного тока требуются пусковые резисторы, потому что частота постоянного тока равна нулю, и, следовательно, без пускового сопротивления бросок очень велик; однако, как только двигатель постоянного тока вращается, пусковые резисторы отключены от цепи, потому что действие генератора (противодействие ЭДС) в электродвигателе ограничивает рабочий ток. Используя этот счетчик ЭДС через шунтирующий ток, вы можете управлять напряжением на клеммах машины постоянного тока.

Другая вещь, которую вы должны иметь в виду, это то, что машина постоянного тока имеет коммутаторы, которые позволяют двигателю постоянного тока работать, иначе он повернется на 90 градусов и остановится, но коммутатор постоянно устанавливает и тормозит соединения, когда двигатель вращается, поэтому ротор полярность поля относительно полюсов статора остается правильной, а электродвигатель продолжает вращаться.Серийный двигатель постоянного тока будет работать от переменного тока, блендеры, буровые двигатели и т. Д. - это двигатели постоянного тока (универсальные двигатели). Несмотря на то, что полярность клемм с переменным током будет переключаться назад и вперед, из-за коммутатора и того факта, что тот же ток течет в поле и статоре, ток не меняется на противоположный при подаче переменного тока, двигатель постоянного тока вращается только в одном направлении.

С генератором переменного тока параллельно с другими генераторами переменного тока, если я попытаюсь повысить частоту, я подниму киловатт, а если я попытаюсь поднять напряжение, я подниму киловольт.Если я уменьшу частоту и напряжение достаточно, генератор разгрузится до такой степени, что обратное направление тока и двигатели генератора переменного тока. С шунтирующим электродвигателем постоянного тока путем управления током, проходящим через шунтирующее охлаждение, клеммы машины постоянного тока будут превышать или быть ниже напряжения батареи / системы постоянного тока. Если клеммы постоянного тока выше напряжения батареи, ток будет течь в батарею, если клеммы постоянного тока упадут ниже напряжения батареи, ток изменит направление, и ток будет течь из батареи, и генератор постоянного тока станет двигателем постоянного тока без изменения направления .

Мотор-генератор - обзор

Типы и функции двигателей

Электродвигатель / генератор M / G требуется для зарядки и разряда накопленной кинетической энергии в маховике. Индукционные машины, машины с постоянным магнитом и синхронные машины с переменным сопротивлением обычно используются для накопления энергии маховиком [56]. Индукционные машины обычно дешевле и проще в производстве, и они могут быть изготовлены из высокопрочных материалов. Поскольку в них не используются постоянные магниты, нет опасений по поводу размагничивания и потерь, когда маховик вращается в вакууме.Однако из-за более низкой плотности мощности, ограниченной скорости и высокой температуры ротора они не являются наиболее подходящим кандидатом для сверхвысоких скоростей. Они также имеют низкий коэффициент мощности при небольшой нагрузке, высоком пусковом токе намагничивания, а регулирование скорости асинхронной машины сложнее по сравнению с машинами с постоянным магнитом и синхронными машинами с переменным сопротивлением.

Синхронные машины с переменным сопротивлением имеют низкие потери при запуске, они имеют высокий КПД, высокую удельную мощность и относительно легко рассеивают тепло.В них не используются постоянные магниты, поэтому нет проблем с размагничиванием и потерями, когда маховик вращается в вакууме. Роторы могут изготавливаться из высокопрочных и недорогих материалов. Однако они обладают сложными конструктивными особенностями, сложны в изготовлении, имеют низкий коэффициент мощности, имеют пульсации крутящего момента, вибрацию и шум, а их скорость трудно регулировать. У них также более высокая стоимость производства по сравнению с индукционными машинами.

Синхронные машины с постоянными магнитами имеют более высокую удельную мощность, эффективность, плотность крутящего момента, коэффициент мощности с диапазоном нагрузки и скорости, плотность нагрузки, более высокую скорость.Однако они имеют высокую стоимость из-за использования магнитов, риска размагничивания и сложных проблем управления температурным режимом.

Некоторые нестандартные конструкции машин также были исследованы для применения в маховиках для накопления энергии [57]. Безподшипниковые униполярные машины переменного тока, машины с осевым потоком на постоянных магнитах, многофазные электрические машины, машины с массивом постоянных магнитов Хальбаха [57]. Бессердечниковая машина с постоянными магнитами для применения в качестве накопителя энергии без вала с магнитным левитированием маховика представлена ​​в [58].В этой статье описывается использование статора без сердечника или железа и левитирующего маховика с магнитным подшипником. Таким образом, обмотку можно разместить на стационарной конструкции. Предлагаемая конструкция идентична существующей бессердечной машине для работы в вакууме и имеет удерживающую конструкцию на земле. Крепление обмоток к основанию с помощью удерживающих конструкций, расположенных на земле, отличается высокой прочностью, надежностью и простой механической конструкцией с точки зрения изготовления и обслуживания.

Требования к мощности, скорости и крутящему моменту для накопителя энергии с маховиком показаны на рис.51. Номинальная частота вращения составляет ω, 1 , номинальный крутящий момент составляет T , номинальный , а номинальная мощность составляет P, , номинальный . Время, необходимое для зарядки маховика до номинальной скорости в моторном режиме, составляет т 1 . В течение этого периода входная мощность и частота вращения маховика увеличиваются до номинальной мощности и номинальной скорости. В течение т 1 до произвольного времени т 2 маховик вращается с минимальной мощностью и крутящим моментом, обозначенными соответственно P 1 и T 1 в вакууме при постоянная номинальная скорость.Эта мощность зависит от типа двигателя, потерь и эффективности насоса, необходимого для создания вакуума.

Рис. 51. Требования к конструкции электрической машины для маховикового накопителя энергии.

Маховик работает в генераторном режиме в течение т 2 до т 3 и разряжается с постоянной мощностью, при этом его частота вращения снижается от номинального значения до ω 2 об / мин .Временные интервалы t 3 - t 2 могут быть легко найдены из кинетической энергии вращения Δ E и соотношения между мощностью и энергией следующим образом:

(57) ΔE = 12Jω12 − ω22

(58) Paverage = ΔEt3 − t2

, где J - момент инерции, ω 1 и ω 2 представляют начальную и конечную скорости маховика соответственно. В идеальном случае необходимое время, чтобы маховик достиг ω 2 , при средней мощности P средней составляет t 1 .Генератор должен обеспечивать постоянную мощность P номинальной в течение т 2 и т 3 . Электродвигатель / генератор должен генерировать постоянную мощность P номинальной , в то время как скорость снижается с ω 1 и ω 2 об / мин. Время t 2 может быть любым произвольным временем в соответствии с требованиями к хранению энергии. Кроме того, могут быть некоторые ограничения на t 2 из-за работы маховика в условиях вакуума.

Электродвигатели и генераторы

Электродвигатели, генераторы, генераторы и громкоговорители объясняются с помощью анимации и схем.
Это страница ресурсов Physclips, многоуровневого мультимедийного введения в физику (загрузите анимацию на этой странице).

Двигатели постоянного тока

Простой двигатель постоянного тока имеет катушку с проволокой, которая может вращаться в магнитном поле. В ток в катушке подается через две щетки, которые обеспечивают подвижный контакт с разрезное кольцо.Катушка находится в постоянном магнитном поле. Силы приложили на токоведущих проводах создают крутящий момент на катушке. Сила F на проводе длиной L, по которому течет ток i в магнитном поле. B равно iLB, умноженному на синус угла между B и i, который будет равен 90 °, если поля были равномерно вертикальными. Направление F идет справа ручная линейка *, как показано здесь. Две силы, показанные здесь, равны и противоположны, но они смещены вертикально, поэтому создают крутящий момент.(Силы на две другие стороны катушки действуют по одной и той же линии и поэтому не создают крутящего момента.)
    * Для запоминания направления силы используется ряд различных символов. Некоторые используют правую руку, некоторые - левую. Для студентов, которые знают умножение векторов, легко использовать силу Лоренца напрямую: F = q v X B , откуда F = i dL Б .Это источник диаграммы, показанной здесь.
Катушку также можно рассматривать как магнитный диполь или небольшой электромагнит, как указано стрелкой SN: согните пальцы правой руки в направление течения, а большой палец - северный полюс. В эскизе Справа изображен электромагнит, образованный катушкой ротора. как постоянный магнит, и тот же крутящий момент (север притягивает юг) действовать, чтобы выровнять центральный магнит.
    Мы используем синий для Северного полюса и красный для Южного. Это просто соглашение, чтобы сделать ориентацию ясной: нет никакой разницы в материале на обоих концах магнита, и они обычно не окрашиваются в другой цвет.

Обратите внимание на влияние щеток на разрезное кольцо . Когда плоскость вращающейся катушки достигает горизонтали, щетки разорвут контакт (теряется не так много, потому что это точка нулевого момента все равно - силы действовать внутрь).Угловой момент катушки переносит ее через этот разрыв. точка, и ток затем течет в противоположном направлении, что меняет направление на противоположное. магнитный диполь. Итак, после прохождения точки останова ротор продолжает движение. повернуть против часовой стрелки и начать выравнивание в обратном направлении. в В следующем тексте я буду в основном использовать картинку «крутящий момент на магните», но имейте в виду, что использование щеток или переменного тока может привести к появлению полюсов электромагнит, о котором идет речь, меняет положение, когда ток меняет направление.

Крутящий момент, создаваемый в течение цикла, зависит от вертикального разделения две силы. Следовательно, это зависит от синуса угла между ось катушки и поле. Однако из-за разрезного кольца оно всегда в том же смысле. Анимация ниже показывает его изменение во времени, а вы можно остановить на любом этапе и проверить направление, приложив правую руку правило.

Двигатели и генераторы

Теперь двигатель постоянного тока также является генератором постоянного тока.Взгляните на следующую анимацию. В катушка, разрезное кольцо, щетки и магнит - это то же оборудование, что и двигатель выше, но катушка вращается, что генерирует ЭДС.

Если вы используете механическую энергию для вращения катушки (N витков, область A) с равномерной угловая скорость ω в магнитном поле B , это создаст в катушке синусоидальную ЭДС. ЭДС (ЭДС или электродвижущая сила - это почти то же самое, что и напряжение).Пусть θ будет угол между B и нормалью к катушке, поэтому магнитный поток φ равен NAB.cos θ. Закон Фарадея дает:

Приведенная выше анимация будет называться генератором постоянного тока. Как и в двигателе постоянного тока, концы катушки соединяются с разрезным кольцом, две половины которого контактируют кистями. Обратите внимание, что щетки и разрезное кольцо «исправляют» создаваемую ЭДС: контакты организованы так, что ток всегда будет течь в одном и том же направление, потому что, когда катушка проходит мимо мертвой точки, где щетки встречаются зазор в кольце, соединения между концами катушки и внешние клеммы перевернуты.ЭДС здесь (без учета мертвой зоны, которая обычно бывает при нулевом напряжении) равна | NBAω sin ωt |, как нарисовано.

Генератор

Если нам нужен AC, нам не нужно исправление, поэтому нам не нужны разрезные кольца. (Этот это хорошая новость, потому что разрезные кольца вызывают искры, озон, радиопомехи и дополнительный износ. Если хочешь Постоянного тока, часто лучше использовать генератор и выпрямлять диоды.)

В следующей анимации две кисти соприкасаются с двумя непрерывными кольцами, поэтому две внешние клеммы всегда подключены к одним и тем же концам катушки.Результатом является не исправленная синусоидальная ЭДС, заданная NBAω sin ωt, который показан на следующей анимации.


Это генератор переменного тока. Преимущества переменного и постоянного тока генераторы сравниваются в разделе ниже. Выше мы видели, что двигатель постоянного тока также является генератором постоянного тока. Точно так же генератор переменного тока также является двигателем переменного тока. Однако, это довольно негибкий. (Смотри как настоящие электродвигатели работают для более подробной информации.)

Задняя ЭДС

Теперь, как показывают первые две анимации, двигатели и генераторы постоянного тока могут быть то же самое. Например, двигатели поездов становятся генераторами, когда поезд замедляется: они преобразуют кинетическую энергию в электрическую и мощность обратно в сеть. В последнее время несколько производителей начали выпуск автомобилей. рационально. В таких автомобилях электродвигатели, используемые для привода автомобиля, также используется для зарядки аккумуляторов при остановке автомобиля - это называется регенеративным торможение.

Итак, вот интересное следствие. Каждый двигатель - это генератор . Это правда, в некотором смысле, даже когда он функционирует как двигатель. ЭДС, что мотор генерирует называется обратной ЭДС . Обратная ЭДС увеличивается с увеличением скорость из-за закона Фарадея. Итак, если двигатель не нагружен, он очень сильно крутится. быстро и разгоняется до появления обратной ЭДС плюс падение напряжения из-за потерь, равно напряжению питания. Обратную ЭДС можно рассматривать как «регулятор»: он останавливает двигатель бесконечно быстро (что избавляет физиков от некоторого затруднения).Когда двигатель загружен, то фаза напряжения становится ближе к фазе тока (начинает выглядят резистивными), и это кажущееся сопротивление дает напряжение. Итак, спина Требуемая ЭДС меньше, и двигатель вращается медленнее. (Чтобы добавить обратно ЭДС, которая является индуктивной, к резистивной составляющей необходимо добавить напряжения которые не в фазе. См. AC схем.)

Катушки обычно имеют сердечники

На практике (и в отличие от схем, которые мы нарисовали) генераторы и постоянный ток двигатели часто имеют сердечник с высокой проницаемостью внутри катушки, так что большие магнитные поля создаются умеренными токами.Это показано слева в рисунок ниже, на котором статоры (статические магниты) постоянные магниты.

Моторы универсальные

Магниты статора тоже могут быть выполнены в виде электромагнитов, как показано выше. справа. Два статора намотаны в одном направлении, чтобы поле в том же направлении, а ротор имеет поле, которое дважды меняет направление за цикл, потому что он подключен к щеткам, которые здесь не указаны.Один Преимущество наличия статоров в двигателе состоит в том, что можно сделать двигатель который работает от переменного или постоянного тока, так называемый универсальный двигатель . Когда вы едете у такого мотора с переменным током ток в катушке меняется дважды в каждом цикле (помимо изменений со щеток), а вот полярность статоров изменяется одновременно, поэтому эти изменения аннулируются. (К сожалению, кисти еще остались, хотя я спрятал их в этом наброске.) За преимущества и недостатки постоянного магнита по сравнению со статорами с обмоткой см. ниже. Также смотрите больше на универсальных моторах.

Построить простой мотор

Чтобы построить этот простой, но странный мотор, вам понадобятся два довольно сильных магнита. (подойдут редкоземельные магниты диаметром около 10 мм, магниты), жёсткий медный провод (не менее 50 см), два провода с крокодилом зажимы на обоих концах, фонарь на шесть вольт, две банки для безалкогольных напитков, два блока дерева, липкой ленты и острого гвоздя.

Сделайте катушку из жесткого медного провода, чтобы не нуждаться во внешних служба поддержки. Намотайте от 5 до 20 витков по кругу диаметром около 20 мм и два конца радиально направлены наружу в противоположных направлениях. Эти цели будут быть одновременно осью и контактами. Если провод имеет лаковую или пластиковую изоляцию, снимите его на концах.

Опоры оси могут быть выполнены из алюминия, поэтому что они создают электрический контакт.Например, проткнуть безалкогольный напиток банки с гвоздем, как показано. Расположите два магнита с севера на юг, так что магнитное поле проходит через катушку под прямым углом к оси. Приклейте магниты изолентой или приклейте к деревянным блокам (не показаны на диаграмме), чтобы они оставались на нужной высоте, затем переместите блоки поставить их на место, достаточно близко к катушке. Сначала поверните катушку так что магнитный поток через катушку равен нулю, как показано на схеме.

Теперь возьмем аккумулятор и два провода с зажимами типа «крокодил». Соединять два вывода аккумулятора к двум металлическим опорам для катушка и она должна повернуться.

Обратите внимание, что у этого двигателя есть по крайней мере одна «мертвая зона»: он часто останавливается. в положении, когда на катушке отсутствует крутящий момент. Не уходи он горит слишком долго: он быстро разряжает аккумулятор.

Оптимальное количество витков в катушке зависит от внутреннего сопротивление аккумулятора, качество опорных контактов и тип провода, поэтому вам следует поэкспериментировать с разными значениями.

Как уже говорилось выше, это тоже генератор, но очень неэффективный. Чтобы увеличить ЭДС, используйте больше витков (может потребоваться использовать более тонкую проволоку и рамку для намотки.) Вы можете использовать например, электродрель, чтобы быстро ее повернуть, как показано на рисунке выше. Воспользуйтесь осциллографом, чтобы посмотреть на генерируемую ЭДС. Это переменный или постоянный ток?

У этого двигателя нет разъемного кольца, почему он работает на DC? Проще говоря, если бы он был точно симметричным, это не сработало бы.Однако, если ток в одном полупериоде немного меньше, чем в другом, то средний крутящий момент не будет равен нулю, и, поскольку он вращается достаточно быстро, угловой момент, приобретенный во время полупериода с большим током, переносит его через полупериод, когда крутящий момент находится в противоположном направлении. По крайней мере, два эффекта могут вызвать асимметрию. Даже если провода полностью зачищены и чистые, контактное сопротивление вряд ли будет одинаковым даже в состоянии покоя. Кроме того, само вращение вызывает прерывистый контакт, поэтому, если во время одной фазы есть более длительные отскоки, этой асимметрии будет достаточно.В принципе, вы можете частично зачистить провода таким образом, чтобы ток был равен нулю за один полупериод.

Альтернативная версия простого двигателя Джеймса Тейлор.
Еще более простой двигатель (который также намного проще для понимания!) - это униполярный двигатель.

Двигатели переменного тока

С помощью переменного тока мы можем изменить направление поля без использования щеток.Это хорошие новости, потому что мы можем избежать дуги, образования озона и омическая потеря энергии, которую могут повлечь за собой щетки. Далее, потому что кисти контактируют между движущимися поверхностями, они изнашиваются.

Первое, что нужно сделать в двигателе переменного тока, - это создать вращающееся поле. 'Обычный' Переменный ток от 2-х или 3-х контактной розетки - это однофазный переменный ток - он имеет одну синусоидальную разность потенциалов создается только между двумя проводами - активным и нейтральным. (Обратите внимание, что заземляющий провод не пропускает ток, за исключением электрические неисправности.) При однофазном переменном токе можно создать вращающееся поле. за счет генерации двух противофазных токов с помощью, например, конденсатора. В показанном примере два тока сдвинуты по фазе на 90 °, поэтому вертикальный составляющая магнитного поля синусоидальная, а горизонтальная косусоидальная, как показано. Это дает поле, вращающееся против часовой стрелки.

(* Меня попросили объяснить это: из простого AC Теоретически, ни катушки, ни конденсаторы не имеют напряжения в фазе с электрический ток.В конденсаторе напряжение максимально, когда заряд закончил течь на конденсатор и вот-вот начнет стекать. Таким образом, напряжение отстает от тока. В чисто индуктивной катушке падение напряжения является наибольшим, когда ток изменяется наиболее быстро, что также когда ток равен нулю. Напряжение (падение) опережает ток. В моторных катушках фазовый угол меньше 90, потому что электрические энергия преобразуется в механическую энергию.)

На этой анимации графики показывают изменение токов во времени. в вертикальной и горизонтальной катушках. График компонент поля B x и B y показывает, что векторная сумма этих двух полей является вращающейся поле. Основное изображение показывает вращающееся поле. Он также показывает полярность магнитов: как указано выше, синий представляет северный полюс, а красный - южный полюс.

Если мы поместим постоянный магнит в эту область вращающегося поля, или если мы положим в катушке, ток которой всегда течет в одном и том же направлении, тогда это становится синхронный двигатель .В широком диапазоне условий двигатель будет повернуть со скоростью магнитного поля. Если у нас много статоров, вместо этого всего двух пар, показанных здесь, то мы могли бы рассматривать его как шаговый двигатель: каждый импульс перемещает ротор на следующую пару задействованных полюсов. Пожалуйста, помните мое предупреждение об идеализированной геометрии: настоящие шаговые двигатели десятки полюсов и довольно сложные геометрические формы!

Асинхронные двигатели

Теперь, поскольку у нас есть изменяющееся во времени магнитное поле, мы можем использовать наведенную ЭДС в катушке - или даже просто вихревые токи в проводнике - чтобы ротор магнит.Правильно, если у вас есть вращающееся магнитное поле, вы можете просто вставил проводник и получается. Это дает несколько преимуществ асинхронные двигатели : отсутствие щеток или коммутатора означает более простое производство, нет износ, отсутствие искр, отсутствие образования озона и отсутствие связанных с этим потерь энергии с ними. Слева внизу схематическое изображение асинхронного двигателя. (Для фотографий настоящие асинхронные двигатели и более подробную информацию см. в разделе «Индукция». двигатели.) Ваш браузер не поддерживает видео тег.

Анимация справа представляет двигатель с короткозамкнутым ротором . Белка клетка имеет (во всяком случае, в этой упрощенной геометрии!) два круглых проводника, соединенных несколькими прямыми стержнями. Любые два стержня и соединяющие их дуги образуют катушка - на что указывают синие черточки на анимации. (Только два из для простоты показано много возможных схем.)

На этой схеме показано, почему их можно назвать двигателями с короткозамкнутым ротором.Реальность иная: фотографии и подробности см. В разделе «Индукция». моторы. Проблема с показанными асинхронными двигателями и двигателями с короткозамкнутым ротором в этой анимации показано, что конденсаторы высокой стоимости и высокого напряжения стоят дорого. Одним из решений является двигатель с экранированным полюсом, но его вращающийся поле имеет некоторые направления, в которых крутящий момент небольшой, и имеет тенденцию бежать назад при некоторых условиях. Самый простой способ избежать этого - использовать многофазные двигатели.

Трехфазные асинхронные двигатели переменного тока

Однофазный используется в домашних условиях для приложений с низким энергопотреблением, но у него есть недостатки. Во-первых, он выключается 100 раз в секунду (вы не обратите внимание, что флуоресцентные лампы мигают с такой скоростью, потому что ваши глаза слишком медленные: даже 25 изображений в секунду на экране телевизора достаточно, чтобы дать иллюзию непрерывного движения.) Во-вторых, это делает его неудобным для создания вращающихся магнитных полей.По этой причине некоторая высокая мощность (несколько кВт) для бытовых устройств может потребоваться трехфазная установка. Промышленное применение широко использовать трехфазный двигатель, трехфазный асинхронный двигатель является стандартным рабочая лошадка для приложений большой мощности. Три провода (не считая земли) несут три возможных разности потенциалов, которые не совпадают по фазе с каждым другое на 120 °, как показано на анимации ниже. Таким образом, три статора плавно вращающееся поле. (Видеть это ссылка для получения дополнительной информации о трехфазном питании.)

Если поместить постоянный магнит в такой набор статоров, он станет синхронным. трехфазный двигатель . На анимации изображена беличья клетка, в которой простота показана только одна из многих петель наведенного тока. Без механической нагрузки, он вращается практически синхронно с вращающимся полем. Ротор не обязательно должен быть беличьей клеткой: на самом деле любой проводник, который будет переносимые вихревые токи будут вращаться, стремясь следовать за вращающимся полем.Такая компоновка может дать асинхронный двигатель , обладающий высоким КПД, высокая мощность и высокие крутящие моменты в диапазоне скоростей вращения.

Линейные двигатели

Набор катушек можно использовать для создания магнитного поля, которое переводит, скорее, чем вращается. На паре катушек на анимации ниже подается импульс от слева направо, поэтому область магнитного поля перемещается слева направо. А постоянный или электромагнит будет стремиться следовать за полем.Так что простой плита из проводящего материала, потому что в ней наведены вихревые токи (не показаны) содержат электромагнит. В качестве альтернативы мы могли бы сказать, что из Фарадея закон, ЭДС в металлической плите всегда индуцируется, чтобы противодействовать любому изменению в магнитном потоке, а силы на токах, вызванные этой ЭДС, сохраняют поток в плите почти постоянный. (Вихревые токи на этой анимации не показаны.)

В качестве альтернативы мы могли бы иметь комплекты катушек с питанием в подвижной части, и наводить вихревые токи в рельсе.В любом случае получается линейный двигатель, который был бы полезен, скажем, для поездов на магнитной подвеске. (В анимации геометрия как обычно на этом сайте, в высшей степени идеализирован, и только один вихревой ток показано.)

Некоторые примечания к двигателям переменного и постоянного тока для приложений большой мощности

    Этот сайт изначально был написан в помощь старшеклассникам. и учителя в Новом Южном Уэльсе, Австралия, где в новой программе по истории и приложениям физики за счет самой физики, был введен.В новой программе в одной из точечных точек указано следующее: озадачивающее требование: «объясните, что двигатели переменного тока обычно вырабатывают малую мощность и связывают это с их использованием в электроинструментах ".
Двигатели переменного тока используются для приложений с большой мощностью, когда это возможно. Три фазные асинхронные двигатели переменного тока широко используются для приложений большой мощности, в том числе тяжелая промышленность. Однако такие двигатели непригодны, если многофазность недоступна, или трудно доставить. Электропоезда тому пример: строить проще линии электропередач и пантографы, если нужен только один активный проводник, так что это обычно имеет постоянный ток, и многие двигатели поездов работают на постоянном токе.Однако из-за недостатков постоянного тока для высокой мощности, более современные поезда преобразуют постоянный ток в переменный, а затем бегут трехфазные двигатели.

Однофазные асинхронные двигатели имеют проблемы при объединении приложений высокая мощность и гибкие условия нагрузки. Проблема заключается в создании вращающееся поле. Конденсатор может использоваться для подачи тока в один набор впереди катушки, но дорогие высоковольтные конденсаторы стоят дорого. Затененный Вместо них используются полюсы, но крутящий момент на некоторых углах невелик.Если нельзя создают плавно вращающееся поле, и если груз «проскальзывает» далеко за поле, то крутящий момент падает или даже меняется на противоположное.

В электроинструментах и ​​некоторых приборах используются щеточные электродвигатели переменного тока. Кисти вводят потери (плюс образование дуги и озона). Полярность статора изменена. 100 раз в секунду. Даже если материал сердечника выбран так, чтобы минимизировать гистерезис потерь («потери в железе»), это способствует неэффективности и возможности перегрева.Эти моторы можно назвать универсальными. двигатели, потому что они могут работать на постоянном токе. Это дешевое, но грубое решение. и неэффективно. Для приложений с относительно низким энергопотреблением, таких как электроинструменты, неэффективность обычно экономически не важна.

Если доступен только однофазный переменный ток, можно исправить переменный ток и использовать Двигатель постоянного тока. Раньше сильноточные выпрямители были дорогими, но сейчас они становятся все более дорогими. менее дорогой и более широко используемый. Если вы уверены, что понимаете принципы, пора перейти к разделу "Как настоящие электродвигатели работают Джона Стори.Или продолжайте здесь, чтобы найти о громкоговорителях и трансформаторах.


Громкоговорители

Громкоговоритель - это линейный двигатель с небольшим диапазоном. Имеет одинарное перемещение катушка, которая постоянно, но гибко подключена к источнику напряжения, поэтому кистей нет.
The катушка движется в поле постоянного магнита, который обычно имеет форму для создания максимального усилия на катушке.Подвижная катушка не имеет сердечника, поэтому его масса невелика, и он может быстро ускоряться, что позволяет частота движения. В громкоговорителе катушка прикреплена к легкому весу. бумажный конус, который поддерживается на внутреннем и внешнем краях круглыми, плиссированные бумажные «пружины». На фотографии ниже динамик выходит за рамки нормальный верхний предел его перемещения, поэтому катушка видна над полюса магнита.

Для низкочастотного звука с большой длиной волны необходимы большие диффузоры.Диаметр динамика, показанного ниже, составляет 380 мм. Колонки, предназначенные для низкие частоты называются вуферами. Они имеют большую массу и поэтому трудно быстро разогнаться для высокочастотных звуков. На фотографии ниже часть вырезана, чтобы показать внутренние компоненты.

Твитеры - громкоговорители, предназначенные для высоких частот - могут быть просто динамики аналогичной конструкции, но с небольшими диффузорами и катушками малой массы.В качестве альтернативы они могут использовать пьезоэлектрические кристаллы для перемещения конуса.

Громкоговорители представляют собой линейные двигатели со скромным диапазоном - возможно, десятки мм. Подобные линейные двигатели, хотя, конечно, без бумажного конуса, часто используется для радиального перемещения считывающей и записывающей головки на дисководе.
Громкоговорители как микрофоны
На картинке выше вы можете видеть, что картонная диафрагма (конус громкоговорителя) соединена с катушкой с проводом в магнитном поле.Если звуковая волна перемещает диафрагму, катушка будет двигаться в поле, создавая напряжение. Это принцип динамического микрофона - хотя в большинстве микрофонов диафрагма гораздо меньше конуса громкоговорителя. Итак, громкоговоритель должен работать как микрофон. Хороший проект: все, что вам нужно, это громкоговоритель и два провода, чтобы подключить его ко входу осциллографа или микрофонному входу вашего компьютера. Два вопроса: как вы думаете, что масса диффузора и катушки повлияет на частотную характеристику? Как насчет длины волны звуков, которые вы используете?

Предупреждение: настоящие двигатели сложнее

Эскизы двигателей были схемами, чтобы показать принципы.Пожалуйста, не сердитесь, если, когда вы разбираете мотор, он выглядит больше. сложный! (Смотри как настоящие электродвигатели работают.) Например, типичный двигатель постоянного тока вероятно, будет иметь много отдельно намотанных катушек для обеспечения более плавного крутящего момента: всегда есть одна катушка, для которой синусоидальный член близок к единице. Это показано ниже для двигателя с обмотанными статорами (вверху) и постоянные статоры (внизу).

Трансформаторы

На фотографии изображен трансформатор, предназначенный для демонстрационных целей: первичная и вторичная обмотки четко разделены и могут быть удалены и заменен поднятием верхней части сердечника.Для наших целей отметим что у катушки слева меньше катушек, чем у правой (вставки показать крупные планы).

На эскизе и схеме показан повышающий трансформатор. Чтобы сделать понижающий трансформатор, достаточно разместить источник справа, а нагрузку - слева. ( Важно Примечание по безопасности : для настоящего трансформатора вы можете только «подключить его задом наперед» только после проверки соответствия номинального напряжения.) Итак, как же трансформатор работает?

Сердечник (заштрихованный) имеет высокую магнитную проницаемость, т.е. материал, образующий магнитное поле намного легче, чем свободное пространство, из-за ориентации атомных диполей. (На фотографии сердечник - ламинированное мягкое железо.) В результате поле сконцентрировано внутри ядра, и почти силовые линии не выходят из ядра. Если следует, что магнитные потоки φ через первичный и вторичный примерно равны, как показано.Из Фарадея По закону ЭДС на каждом витке первичной или вторичной обмотки составляет −dφ / dt. Если пренебречь сопротивлением и другими потерями в трансформаторе, вывод напряжение равно ЭДС. Для N p витков первичной обмотки это дает

Для N s витков вторичной обмотки это дает Разделение этих уравнений дает уравнение преобразователя где r - коэффициент поворотов. А что с током? Если пренебречь потерями в трансформатор (см. ниже раздел об эффективности), и если мы предположим, что напряжение и ток имеют одинаковое фазовое соотношение в первичной обмотке и вторичный, то из сохранения энергии мы можем записать в установившемся состоянии:
    Power in = power out, поэтому

    V p I p = V s I s , откуда

    I с / I p = N p / N с = 1 / r.

Так что ничего не получишь даром: если увеличишь напряжение, то уменьшишься. ток (по крайней мере) в тот же фактор. Обратите внимание, что на фотографии катушка с большим количеством витков имеет более тонкий провод, потому что она предназначена для меньшего ток, чем тот, с меньшим количеством витков.

В некоторых случаях целью упражнения является уменьшение силы тока. В силе линии передачи, например, потери мощности при нагревании проводов из-за их ненулевое сопротивление пропорционально квадрату тока.Таким образом, передача электроэнергии от электростанции позволяет сэкономить много энергии. в город при очень высоких напряжениях, так что токи невелики.

Наконец, и снова предполагая, что трансформатор идеален, давайте спросим, ​​что резистор во вторичной цепи «похож» на первичную цепь. В первичном контуре:

    V p = V s / r и I p = Я с .г так

    V p / I p = V s / r 2 I s = Р / р 2 .

R / r 2 называется отраженным сопротивлением . При условии, что частота не слишком высока, и при наличии сопротивления нагрузки (условия обычно встречается в практических трансформаторах), индуктивное сопротивление первичной обмотки намного меньше, чем это отраженное сопротивление, поэтому первичная цепь ведет себя как если бы источник управлял резистором номиналом R / r 2 .
КПД трансформаторов
На практике реальные трансформаторы имеют КПД менее 100%.
  • Во-первых, это резистивные потери в катушках (потеря мощности I 2 .r). Для данного материала сопротивление катушек можно уменьшить, сделав их поперечное сечение большое. Удельное сопротивление также можно сделать низким, используя медь высокой чистоты. (См. Дрейф скорости и закон Ома.)
  • Во-вторых, в сердечнике наблюдаются потери на вихревые токи.Это может быть уменьшается за счет ламинирования сердечника. Ламинирование уменьшает площадь цепей в ядре, и таким образом уменьшите ЭДС Фарадея, и, таким образом, текущий текущий в ядре, и таким образом теряется энергия.
  • В-третьих, в сердечнике есть гистерезисные потери. Магентизация и кривые размагничивания магнитных материалов часто немного отличаются (гистерезис или зависимость от истории), и это означает, что требуемая энергия намагничивать сердечник (при увеличении тока) не совсем восстанавливается во время размагничивания.Разница в энергии теряется в виде тепла. в основном.
  • Наконец, геометрический дизайн, а также материал сердечника могут быть оптимизированным, чтобы гарантировать, что магнитный поток в каждой катушке вторичной обмотки почти такой же, как и в каждой катушке первичной обмотки.
Подробнее о трансформаторах: генераторы переменного и постоянного тока
Трансформаторы работают только от переменного тока, что является одним из больших преимуществ переменного тока. Трансформеры позволяют понижать 240 В до уровня, удобного для цифровой электроники (всего несколько вольт) или для других приложений с низким энергопотреблением (обычно 12 В).Трансформеры повышайте напряжение для передачи, как упомянуто выше, и понижайте для безопасности распределение. Без трансформаторов потери электроэнергии при распределении сети, и без того высокие, были бы огромными. Возможно преобразование напряжения в DC, но сложнее, чем в AC. Кроме того, такие преобразования часто неэффективно и / или дорого. Дополнительным преимуществом переменного тока является то, что его можно использовать на двигателях переменного тока, которые обычно предпочтительнее двигателей постоянного тока для приложений большой мощности.

Другие ресурсы от нас

Некоторые внешние ссылки на веб-ресурсы по двигателям и генераторам

  • Гиперфизика: Электромоторы с сайта HyperPhysics в штате Джорджия. Отлично сайт габаритный, и моторный отсек для этого идеально подходит. Хороший использование веб-графики. Производит двигатели постоянного, переменного тока и асинхронные двигатели и имеет обширный ссылки
  • Громкоговорители .. Еще больше хороших материалов от Государственной Гиперфизики Джорджии.Хорошая графика, хорошие объяснения и ссылки. Этот громкоговоритель сайт также включает в себя вложения.
  • http://members.tripod.com/simplemotor/rsmotor.htm A сайт, описывающий двигатель, построенный студентами. Ссылки на другие двигатели, построенные тот же студент и ссылки также на сайты о моторах.
  • http://www.specamotor.com A сайт, который сортирует двигатели различных производителей в соответствии со спецификациями, введенными пользователем.

В чем разница между постоянными магнитами и наличие электромагнитов в двигателе постоянного тока? Это делает его более эффективным или более могущественный? Или просто дешевле?

Когда я получил этот вопрос на Высшем Доска объявлений школьной физики, я отправил ее Джону Стори, который не только выдающийся астроном, но и строитель электромобилей.Вот его ответ:

В общем, для небольшого двигателя намного дешевле использовать постоянные магниты. Материалы для постоянных магнитов продолжают совершенствоваться и стали настолько недорогими что даже правительство время от времени присылает вам бессмысленные магниты на холодильник через почту. Постоянные магниты также более эффективны, потому что нет энергии тратится на создание магнитного поля. Так зачем вообще использовать раневое поле Двигатель постоянного тока? Вот несколько причин:

  • Если вы строите действительно большой двигатель, вам понадобится очень большой магнит и в какой-то момент раневое поле может подешеветь, особенно если очень Для создания большого крутящего момента необходимо сильное магнитное поле.Имейте это в виду если вы проектируете поезд. По этой причине в большинстве автомобилей есть стартеры. которые используют поле раны (хотя некоторые современные автомобили теперь используют постоянные магнитные двигатели).
  • У постоянного магнита магнитное поле имеет фиксированное значение (то есть что означает "постоянный"!) Напомним, что крутящий момент, создаваемый двигателем заданная геометрия равна произведению тока через якорь и напряженность магнитного поля.С двигателем с возбужденным полем у вас есть возможность изменения тока через поле и, следовательно, изменения моторные характеристики. Это открывает ряд интересных возможностей; Вы ставите обмотку возбуждения последовательно с якорем, параллельно, или кормить из отдельно контролируемого источника? Пока есть достаточно крутящий момент для преодоления нагрузки на двигатель, внутреннего трения и т. д., чем слабее магнитное поле, тем * быстрее * двигатель будет вращаться (при фиксированной Напряжение).Сначала это может показаться странным, но это правда! Итак, если вы хотите двигатель, который может производить большой крутящий момент в состоянии покоя, но при этом сильно вращаться скорости при низкой нагрузке (как продвигается конструкция поезда?), возможно раневое поле - вот ответ.
  • Если вы хотите, чтобы ваш двигатель работал как от переменного, так и от постоянного тока (так называемый «универсальный» двигатель), магнитное поле должно менять свою полярность каждые полупериод Электропитание переменного тока, чтобы крутящий момент на роторе всегда был в одном и том же направлении.Очевидно, что для достижения этой цели вам понадобится мотор с возбужденным полем.

Мнения, выраженные в этих заметках, принадлежат мне и не обязательно отражают политика Университета Нового Южного Уэльса или Школы физики. В анимации сделал Джордж Hatsidimitris.
Джо Вулф / [email protected]/ 61-2-9385 4954 (UT + 10, +11 окт-март)

NTTI Урок: Электродвигатели: Зеленые машины!

NTTI Урок: Электродвигатели: Зеленые машины!

Электродвигатели: Зеленые машины!


4–6 классы

Студентам очень важно понимать, что учёные и изобретатели приходят из всех слоев общества.История учит нас, что многие ученые не преуспели в школа, и что им нужно альтернативное образование, чтобы преуспеть в жизни. Майкл Фарадей получил образование на рабочем месте («на практике»). обучения, и стал одним из самых известных в мире ученых-экспериментаторов. В первой части урока студенты изучают закон электромагнитного поля Фарадея. индукция при сборке электрогенератора. Вторая часть на уроке рассматриваются иллюстрации различных источников питания, которые можно использовать для работают генераторы и электродвигатели.
3-2-1 Контактное лицо в классе №19 «Больше власти для вас»
Студенты смогут:
  • Перескажите историю изобретателя первого электрогенератора.
  • Приведите и продемонстрируйте закон индукции.
  • Собрать и протестировать электрогенератор, чтобы продемонстрировать закон Фарадея.
  • Продемонстрируйте, как энергия перемещает катушку внутри магнита генератора.
  • Перечислите примеры источников питания, которые могут управлять генератором
  • Нарисуйте картинку, демонстрирующую понимание различных источников питания запуск генератора
  • Сравните генератор с двигателем и оцените их эффективность.
Для студентов:
  • бумага для рисования и написания ответов
  • Рабочий лист: «Электродвигатели: Зеленая машина» (Находится в конце урок.)
Для изготовления генератора:
  • медный провод (# 24)
  • неоновая лампа
  • 4-дюймовый стальной гвоздь
  • пластиковая соломинка
  • маленький стержневой магнит
Словарь:
  • Ток - поток электроэнергии
  • Катушка - петли провода, принимающие ток
  • Турбина - колесоподобная машина, вращающая генератор.
  • Электрогенератор - машина, вырабатывающая электричество из магнитов.
  • Электромагнит - комбинация катушки и магнита
  • Источник энергии - вид энергии, который может работать
  • Электродвигатель - машина, преобразующая электрическую энергию в механическую.

Часть I:

Индукция Фарадея
Учитель установит качели с двумя катушками, чтобы продемонстрировать, как действует электричество. создается в проволоке путем перемещения магнита. Толкайте один магнит вперед и назад через первую петлю. Попросите учеников объяснить, что заставляет катушки качаться, и дайте им одну-две минуты, чтобы написать ответ на этот вопрос. сказать они должны быть готовы поделиться своим ответом с классом.

УЧИТЕЛЬ: Давайте посмотрим, что, по вашему мнению, заставляет катушки качаться.Мужчина у Имя Майкла Фарадея было первым, кто попытался ответить на этот вопрос. В 1832 году он сказал, что электричество генерируется в проводе всякий раз, когда магнит проходит мимо него. Его гениальная идея стала законом индукции Фарадея, но на самом деле это было случайно. что он сделал это открытие. Майкл не ходил в среднюю школу. Вместо этого он был обучался переплету с 14 лет в течение 8 лет, затем стал лабораторией ассистент в большом вузе. Большую часть времени он пытался преобразовать магнетизм в электричество.На сегодняшнем уроке мы исследуем эти отношения. между электричеством и магнетизмом - связь E и M - и тогда мы построить генератор. Позже мы будем использовать некоторые источники питания, такие как аккумулятор, перевернуть мотор собственного творения! ЦЕЛЬ 1.

УЧИТЕЛЬ: (Учитель указывает на демонстрацию.) Первая петля - электрическая. генератор, подобный тому, который Фарадей сделал в 1832 году. Он преобразует механическую энергию в электроэнергия. Второй контур - это двигатель, который преобразует электричество в механическая сила, например, в автомобильном двигателе.Нам нужно узнать разницу между этими двумя машинами.

Очень важно сосредоточить внимание студентов на просмотре. Это помогает им сосредоточиться их внимание к целям урока. Таким образом студенты узнают, что видео не только для их развлечения.

УЧИТЕЛЬ: Давайте посмотрим видео, показывающее Участница актерского состава Стефани вырабатывает электричество, используя свой личный самодельный генератор. Позже она покажет нам разные источники энергии, которые мы можем использовать для бега. наши генераторы и моторы.

Производство электроэнергии
УЧИТЕЛЬ: Как я могу производить электричество? Посмотрите видео сейчас и вы сможете объясните, как создается электричество.

START видео на тему «Больше энергии для вас».
PAUSE видео после того, как вы услышите: «Разве я не говорил вам, что это просто».

УЧИТЕЛЬ: Назовите два разных способа производства электричества. (Вы производите электричество перемещение магнита мимо проволоки. Или, проведя проволокой мимо магнита.Это не независимо от того, какой из них движется. Невежественный провод не заметит разницы!) Студент продемонстрирует генерацию электричества с помощью провода и магнита. Мы наблюдаем открытие Фарадеем создания электричества с помощью магнитов. Почему разве не практично производить электричество таким образом? Внимательно посмотрите видео, чтобы узнать почему бы нет? ЦЕЛЬ 2.

РЕЗЮМЕ видео.
PAUSE видео после того, как вы услышите предложения: "Вам нужен постоянный поток электричество.Вам нужен генератор ".

УЧИТЕЛЬ: Почему это не практично? (Электричество поступает рывками. Свет в вашем дом будет то включаться, то выключаться, то включаться, то выключаться .... Это очень раздражает!) Что вы нужно сделать постоянный поток электричества? (Генератор.) Ученые называют этот поток электричества «ток». Напишите на доске слово «ток». Попросите ученика прочитать Определение. Чтобы увидеть, как генератор вырабатывает постоянный ток, понаблюдайте за Стефани в видео показывает, как генератор работает для создания постоянный ток.

РЕЗЮМЕ видео.

ОСТАНОВИТЕ видео после того, как услышите слова: «Через некоторое время ваша рука действительно устает».

УЧИТЕЛЬ: Что происходит, когда петли проволоки поворачиваются внутри магнита? (Это создает постоянный ток электричества согласно знаменитому закону Фарадея.) У ученых есть причудливое слово для обозначения петель из проволоки - они называют это катушкой. (Напишите слово «катушка» на доске.) Куда уходит электрический ток из катушки? (По проводам а потом в лампочку, которая загорается!) Что значит Стефани использует для поворота провод внутри магнита? (Сила ребенка - она ​​использовала ее собственная мышечная сила.) Производила ли она постоянный поток электричества? (Да как много электричества? (Достаточно, чтобы зажечь лампочку.)

Создание генератора E-M
УЧИТЕЛЬ : Давайте воспользуемся законом Фарадея о производстве электричества и сделаем игрушку. генератор. Вам понадобятся следующие материалы: моток проволоки, стержневой магнит, 4-дюймовый стальной гвоздь, пластиковая трубочка и неоновая лампа. Ваша задача - построить генератор из этих материалов и произвести достаточно электричества, чтобы включить на маленькой неоновой лампе.Сделайте следующее: Сделайте около 50 витков оголенного провода. вокруг соломки, чтобы сделать катушку. Вставьте стальной гвоздь в катушку. Подключите выводы катушки к неоновой лампе. Затем погладьте магнит взад и вперед. поперек катушки. Когда неоновая лампа светится, вы получили электричество из «электромагнитный генератор», или сокращенно генератор ЭМ. Как еще мы можем сделать электричество? (Согласно закону индукции Фарадея, вы также можете перемещать провод мимо магнита.) Дайте ученикам 10-15 минут, чтобы построить свои генераторы.Разместите их в классе, чтобы все могли наблюдать. Постройте большой баннер со знаменитым законом индукции Фарадея: «Электричество вырабатывается в проводе. всякий раз, когда магнит проходит мимо него ». ЦЕЛЬ 3 и 4.

Часть II:

Источники энергии: А вот и Солнце!
УЧИТЕЛЬ : Подумайте, почему ваш генератор непрактичен. (Потому что это не вырабатывает достаточно электричества, чтобы включить свет в вашем доме или в вашем телевизоре.И, через некоторое время ваша рука действительно устает от включения генератора.) Итак, что делать мы используем для производства всего электричества, которое мы используем каждый день? (Генератор побольше!) Что мы используем вместо детской силы? Составим список классов того, что мы умеем использовать. (Сила воды, пара, солнечная энергия. Попросите ученика пойти в классной доске и начните составлять список с помощью всего класса.) У ученых есть слова для обозначения всех этих вещей, например, сила ребенка, которая может включить или сделать работу с генератором.Они называют их источниками энергии. (Писать "источники питания" вверху списка и определите его.)
Touring Electric Power Plants
УЧИТЕЛЬ: Вернемся к видео, чтобы проверить наш список источников питания. Мы будем собираетесь совершить электронную экскурсию в Лас-Вегас, чтобы познакомиться с одним из мировых крупнейшие электростанции.

START видео, как говорит Стефани: «Итак, что мы используем, чтобы сделать все электричество, которое мы используем каждый день? "
PAUSE видео после того, как вы услышите слова "Ну и что? держит свет в Лас-Вегасе? Гидроэнергия от плотины Гувера, вот что " с изображением плотины Гувера.

УЧИТЕЛЬ: Что вращает генератор - раскручивает катушку с проволокой внутри магнита? (Проточная вода - гидроэнергетика! Укажите в списке классов на «гидроэнергетику».) Что название дано колесообразной машине, которая вращает вал внутри генератор? (Турбина. Укажите на иглу (вал) в игрушечном генераторе.) Как можем ли мы производить больше электроэнергии для Лас-Вегаса? (Увеличьте расход воды на Плотина Гувера. Это быстрее вращает турбину и производит больше электроэнергии.)

REWIND видео в начало анимированной последовательности.

УЧИТЕЛЬ: Давайте еще раз посмотрим, как работает гидроэнергетика. Внимательно слушай это время для различных частей генератора с водным приводом.

РЕЗЮМЕ видео.
PAUSE сразу после того, как вы услышите, как Стефани объясняет, как вода силовые работы.

УЧИТЕЛЬ: Вы должны нарисовать на листе бумаги картинку, показывающую, как электричество производится из воды. Пометьте турбину, вал и генератор. Попросите добровольца нарисовать электричество на водной основе. машина на доске.Хотя открытие Фарадея поначалу восприняли скептически, сегодня вся наша электроэнергия вырабатывается движущимся гигантом катушки с проволокой возле магнитов. Удивительно, что просто подключив медный провод и стальные магниты на электростанции, падающая вода может вращать турбины, которые вырабатывает достаточно электричества, чтобы осветить весь Лас-Вегас и многие другие крупные города. миль отсюда! Что можно использовать для энергии ветра? (Ветряная мельница.) Давайте понаблюдаем Мигель, помощник Стефани в поле, объясняет, как ветер может электричество - вниз на «ветряной электростанции» в Калифорнии.

РЕЗЮМЕ видео.
ПАУЗА видео в конце электронного выезда на места.

УЧИТЕЛЬ: Как ветер может вырабатывать электричество? (Ветер крутит лопасти ветряная мельница, известная как турбина, которая по очереди вращает вал, который вращает катушку внутри магнита, известного как генератор, и он производит электричество.) Нарисуйте вторую картинку на листе бумаги, на которой показаны части ветряной машины, производящей электричество. Итак, ветер может производить электричество, а воду может производить электричество.Как пар может производить электричество? Настройте эксперимент, чтобы показать, что пар может производиться из различных видов топлива, например, лампового масла, природного газ и алкоголь. Давайте посмотрим видео, чтобы увидеть, как работает масляная энергия.

РЕЗЮМЕ видео.
ПАУЗА видео в конце выезда на нефтяную электростанцию.

УЧИТЕЛЬ: Как нефть делает электричество? (Масло сжигается, чтобы нагреть воду, которая делает пар. Пар перемещает лопатки турбины, которые вращают вал внутри генератор.Вал вращает катушку с проволокой внутри магнита в генераторе, который производит ток электричества.) После того, как электричество произведено, где оно пойти оттуда? (Он идет до проводов высокого напряжения. Нарисуйте третий рисунок, показывает, как электричество получают из горящего масла. Дайте учащимся 1-2 минуты чтобы завершить их рисунок.) Есть несколько способов вскипятить воду, чтобы пар. Вместо нефти, какое еще топливо, по нашему мнению, можно использовать для производства электричество? (Природный газ, уголь.)

УЧИТЕЛЬ: Эти виды топлива называются «ископаемыми видами топлива», потому что они получены из мертвых. растения или животные, которые были закопаны в землю и стали окаменелостями. Ученые называют ископаемое топливо «похороненным солнечным светом», потому что растения производят пищу или топливо из сила солнца, а затем умри и похорони. Какое топливо похоронено солнышком - подсолнечное масло или моторное масло? (Моторное масло, потому что оно получено из закопанных растений или животных.) Как и подсолнечное масло, моторное масло на самом деле является подсолнечным маслом. Вместо использования похороненного солнечный свет или «масло для загара», мы собираемся узнать, как мы можем использовать само солнце, чтобы сделать электричество.Давайте совершим экскурсию на электростанцию ​​Solar I в Калифорнии. с гидом Мигелем. Расскажи мне, что Мигель говорит о солнце мощность (солнечная энергия).

РЕЗЮМЕ видео.
ПАУЗА видео в конце электронного выезда на места.

УЧИТЕЛЬ: Как солнечная энергия производит электричество? (Большие зеркала отражают солнечного света и сфокусируйте его, чтобы нагреть воду в приемнике. Пар, произведенный нагретым вода под давлением поступает по трубам к турбине и вращает ее лопасти.Турбина прикреплена к вращающемуся валу, который входит в генератор, и вот где вырабатывается электричество.) Потратьте две минуты, чтобы нарисовать картинку, которая показывает части солнечной электростанции. Затем мы посмотрим видео, чтобы проверить что мы узнали до сих пор.

РЕЗЮМЕ видео.

СТОП видео в конце.

УЧИТЕЛЬ: Итак, давайте рассмотрим. Как можно получить электричество с помощью магнита и провод? (Проведите проволокой мимо магнита или магнитом мимо проволоки.Это Фарадея Индукция!) Как сделать постоянный ток электричества? (Вращая катушку внутри магнита. Две части составляют генератор.) Какая мощность источники, используемые для запуска генератора? (Проточная вода, пар, ископаемое топливо, солнце.) Перечислите этапы получения электричества из источника питания. (Например, ветер вращает турбину, которая вращает вал внутри генератора, где электричество из-за вращения катушки внутри магнита.) Проверьте список классов источников питания.Мы пропустили один? ЦЕЛЬ 5 и 6 .

Чистая, зеленая машина
УЧИТЕЛЬ : Давайте определим чистые источники энергии для производства электроэнергии. Из список классов, дайте мне примеры чистых источников энергии? (Солнце, ветер или вода.) Почему масло не является чистым источником энергии? Зажигаем керосиновую лампу маслом для студентов наблюдать дым. (Это загрязняет воздух.) Является ли батарея чистой силой? источник? (Да, это источник энергии, поскольку из него можно производить электричество.Если это не содержит токсичных химикатов, значит, это чистый или не загрязняющий окружающую среду источник. А аккумулятор действительно является «химическим генератором».) А как насчет солнечного элемента? (Да, это производит электричество, не загрязняя окружающую среду. Это чистый, зеленый машина!)

УЧИТЕЛЬ : Можем ли мы использовать наш чистый химический генератор - батарею - для изготовления мотор? Рабочий лист под названием «Зеленая машина» [находится в конце урока] показывает, как построить и эксплуатировать двигатель. Используйте эту диаграмму для построения мотор и заставить его работать.

Учитель циркулирует среди учеников, чтобы помочь им построить мотор. Позвольте учащимся поэкспериментировать со вторым магнитом, чтобы увидеть, смогут ли они изменить скорость мотора. Попросите их попробовать поставить пару притягивающих магнитов на верхней части батареи вместо одного магнита. Дайте студентам 15 минут на то, чтобы строят свои моторы.

УЧИТЕЛЬ : Сравните ваши игрушечные моторы и генераторы. Перечислите различия между двумя. (Предлагается, чтобы учитель нарисовал диаграмму Венна, чтобы показать сравнение.Генераторы производят электричество, но двигатели производят движение или механическая сила. Кроме того, генераторы используют источник энергии для перемещения турбины или механическая энергия, которая преобразуется в электричество. Электродвигатели - это напротив: они используют электричество в качестве источника энергии, например батареи.) Итак, как вы Как видите, мотор - это действительно генератор, работающий «задом наперед»! Теперь используйте свой знание электричества и магнетизма, чтобы объяснить, что делает двойные катушки качать? Если вы понимаете связь E и M, вы можете увидеть, что включается генератор и мотор.Власть преобразуется туда и обратно из электричество (E) в магнетизм (M). ЦЕЛЬ 7 .

ОЦЕНКА : Оцените обучение учащихся, продемонстрировав двойную катушку качели и попросили студентов написать один абзац, объясняющий, что делает катушки качаются. Попросите их сделать набросок качелей двойной катушки и пометить следующие: мотор, генератор. Дайте им одну или две минуты, чтобы написать ответ на этот вопрос.

  • Организовать экскурсию на электростанцию.Назначьте домашнее задание для каждого студент должен подготовить не менее пяти вопросов об электричестве, чтобы задать гиду во время визита.
  • Организуйте экскурсию в электротехническую компанию. Узнайте о карьере в сфере электричества.
  • История и наука :
    1. Исследование английского ученого Майкла Фарадея. Напишите отчет о его жизни как мальчик и события, которые привели его к тому, что он стал великим ученым и изобретателем.
    2. Изучите разнообразие двигателей, которые производились с восемнадцатого века.Сравните выходную мощность бензиновых двигателей с электродвигателями.

    Искусство и наука :
    Спроектировать и сконструировать химический генератор - аккумулятор. Проверьте аккумулятор с помощью небольшая лампочка лампы.

    Математика и естественные науки :
    1. Учащиеся измеряют ток и напряжение, вырабатываемые их игрушечными генераторами. Скомпилируйте данные как целый класс и вычислите среднее значение и диапазон данные. Сравните их значения с коммерческими электрическими генераторами.
    2.Ученики конструируют два игрушечных электродвигателя, используя один и два магнита. Сравните напряжение и скорость двигателей. Постройте график результатов.

    Карьера в области науки, математики и технологий :
    1. Исследовательская карьера в области электричества и электроники.
    2. Просмотрите другие курсы ASSET о карьере в науке, такие как Futures и Futures2, «Открывая женщин в науке» и «Прорыв», взаимодействия: Реальная наука Реальная математика, №4, «Солнечная энергия».

    Laserdisc :
    Электричество, Глава A16, «Электрические силы и поля."Сиэтл, Вашингтон: Videodiscovery, Inc., 1992.

    CD Rom / компьютерное программное обеспечение :
    Time Shift Radio, Tom Snyder Productions, 1995.

    Нажмите здесь, чтобы просмотреть рабочий лист, связанный с этим уроком.

    Главный учитель: Стив Мартин


    База данных планов уроков
    NTTI
    Thirteen Ed Online
    wNetStation

    20.2 Двигатели, генераторы и трансформаторы - физика

    Электродвигатели, генераторы и трансформаторы

    Как мы узнали ранее, на провод с током в магнитном поле действует сила - вспомните, F = IℓBsinθF = IℓBsinθ.Электродвигатели, которые преобразуют электрическую энергию в механическую, являются наиболее распространенным приложением магнитной силы к токоведущим проводам. Двигатели состоят из витков провода в магнитном поле. Когда ток проходит через петли, магнитное поле оказывает на петли крутящий момент, который вращает вал. При этом электрическая энергия преобразуется в механическую работу. На рисунке 20.23 показан схематический чертеж электродвигателя.

    Рисунок 20.23 Крутящий момент в токовой петле.Вертикальная петля из проволоки в горизонтальном магнитном поле прикреплена к вертикальному валу. Когда ток проходит через проволочную петлю, на нее действует крутящий момент, заставляющий вращать вал.

    Давайте исследуем силу на каждом сегменте контура на рисунке 20.23, чтобы найти крутящие моменты, возникающие вокруг оси вертикального вала - это приведет к полезному уравнению для крутящего момента на контуре. Мы предполагаем, что магнитное поле однородно по прямоугольной петле, которая имеет ширину w и высоту ℓ, ℓ, как показано на рисунке.Сначала рассмотрим силу, действующую на верхний сегмент петли. Чтобы определить направление силы, мы используем правило правой руки. Ток идет на страницу слева направо, а магнитное поле идет слева направо в плоскости страницы. Согните пальцы правой руки от вектора тока к вектору магнитного поля, а большой палец правой руки направлен вниз. Таким образом, сила на верхнем сегменте направлена ​​вниз, что не создает крутящего момента на валу. Повторение этого анализа для нижнего сегмента - пренебрегая небольшим зазором, где выходят подводящие провода - показывает, что сила на нижнем сегменте направлена ​​вверх, снова не создавая крутящего момента на валу.

    Рассмотрим теперь левый вертикальный сегмент петли. Снова используя правило правой руки, мы обнаруживаем, что сила, действующая на этот сегмент, перпендикулярна магнитному полю, как показано на рисунке 20.23. Эта сила создает крутящий момент на валу. Повторение этого анализа на правом вертикальном сегменте петли показывает, что сила на этом сегменте направлена ​​в направлении, противоположном направлению силы на левом сегменте, тем самым создавая равный крутящий момент на валу. Таким образом, общий крутящий момент на валу вдвое превышает крутящий момент на одном из вертикальных сегментов петли.

    Чтобы определить величину крутящего момента при вращении проволочной петли, рассмотрите рисунок 20.24, на котором показан вид проволочной петли сверху. Напомним, что крутящий момент определяется как τ = rFsinθ, τ = rFsinθ, где F - приложенная сила, r - расстояние от оси до места приложения силы, а θ - угол между r . и F . Обратите внимание, что при вращении петли ток в вертикальных сегментах петли всегда перпендикулярен магнитному полю.Таким образом, уравнение F = IℓBsinθF = IℓBsinθ дает величину силы на каждом вертикальном сегменте как F = IℓB.F = IℓB. Расстояние × от вала до места приложения этой силы составляет × /2, поэтому крутящий момент, создаваемый этой силой, равен

    . τsegment = rFsinθ = w / 2IℓBsinθ = (w / 2) IℓBsinθ.τsegment = rFsinθ = w / 2IℓBsinθ = (w / 2) IℓBsinθ.

    20,10

    Поскольку есть два вертикальных сегмента, общий крутящий момент в два раза больше, или

    τ = wIℓBsinθ.τ = wIℓBsinθ.

    20,11

    Если у нас есть многократный контур с Н витков, мы получим Н, раз больше крутящего момента одиночного контура.Используя тот факт, что площадь петли равна A = wℓ; A = wℓ; выражение для крутящего момента становится

    τ = NIABsinθ. τ = NIABsinθ.

    20.12

    Это крутящий момент на токоведущей петле в однородном магнитном поле. Можно показать, что это уравнение справедливо для петли любой формы.

    Рисунок 20.24 Вид сверху на проволочную петлю с рисунка 20.23. Магнитное поле создает силу F на каждом вертикальном сегменте проволочной петли, которая создает крутящий момент на валу.Обратите внимание, что токи Iin, IoutIin и Iout имеют одинаковую величину, потому что они оба представляют ток, протекающий в проводной петле, но IinIin течет на страницу, а IoutIout вытекает из страницы.

    Из уравнения τ = NIABsinθ, τ = NIABsinθ, мы видим, что крутящий момент равен нулю, когда θ = 0.θ = 0. Когда проволочная петля вращается, крутящий момент увеличивается до максимального положительного крутящего момента wℓBwℓB, когда θ = 90 ° .θ = 90 °. Затем крутящий момент уменьшается до нуля, когда проволочная петля поворачивается на θ = 180 ° .θ = 180 °.От θ = 180 ° θ = 180 ° до θ = 360 °, θ = 360 ° крутящий момент отрицательный. Таким образом, крутящий момент меняет знак каждые пол-оборота, поэтому проволочная петля будет колебаться вперед и назад.

    Чтобы катушка продолжала вращаться в том же направлении, ток меняется на противоположный, когда катушка проходит через θ = 0 и θ = 180 ° θ = 0 и θ = 180 ° с использованием автоматических переключателей, называемых щетками , как показано на рисунке 20.25.

    Рисунок 20.25 (a) Поскольку угловой момент катушки передает ее через θ = 0, θ = 0, щетки меняют направление тока, и крутящий момент остается по часовой стрелке.(b) Катушка непрерывно вращается по часовой стрелке, при этом ток меняет направление на каждую половину оборота, чтобы поддерживать вращающий момент по часовой стрелке.

    А теперь подумайте, что произойдет, если запустить двигатель в обратном направлении; то есть мы прикрепляем ручку к валу и механически заставляем катушку вращаться в магнитном поле, как показано на рисунке 20.26. Согласно уравнению F = qvBsinθF = qvBsinθ - где θθ - угол между векторами v → v → и B → -chargesB → - заряды в проводах петли испытывают магнитную силу, потому что они движутся в магнитном поле.Снова используя правило правой руки, когда мы сгибаем пальцы от вектора v → v → к вектору B → B →, мы обнаруживаем, что заряды в верхнем и нижнем сегментах ощущают силу, перпендикулярную проводу, которая не вызывает тока. . Однако заряды в вертикальных проводах испытывают силы, параллельные проводу, заставляя ток течь через провод и через внешнюю цепь, если она подключена. Такое устройство, которое преобразует механическую энергию в электрическую, называется генератором.

    Рисунок 20.26 Когда эта катушка вращается на одну четверть оборота, магнитный поток Φ изменяется от максимального до нуля, вызывая ЭДС, которая пропускает ток через внешнюю цепь.

    Поскольку ток индуцируется только в боковых проводах, мы можем определить наведенную ЭДС, рассматривая только эти провода. Как объясняется в разделе «Наведенный ток в проводе», ЭДС движения в прямом проводе, движущемся со скоростью v через магнитное поле B , равна E = Bℓv, E = Bℓv, где скорость перпендикулярна магнитному полю.В генераторе скорость составляет угол θθ с B (см. Рисунок 20.27), поэтому составляющая скорости, перпендикулярная B , равна vsinθ.vsinθ. Таким образом, в этом случае ЭДС, наведенная на каждом вертикальном сегменте провода, равна E = Bℓvsinθ, E = Bℓvsinθ, и они направлены в одном направлении. Полная ЭДС вокруг контура тогда составляет

    E = 2Bℓvsinθ.E = 2Bℓvsinθ.

    20,13

    Хотя это выражение действительно, оно не дает ЭДС как функцию времени. Чтобы узнать, как ЭДС изменяется во времени, предположим, что катушка вращается с постоянной угловой скоростью ω.ω. Угол θθ связан с угловой скоростью соотношением θ = ωt, θ = ωt, так что

    E = 2Bℓvsinωt.E = 2Bℓvsinωt.

    20,14

    Напомним, что тангенциальная скорость v связана с угловой скоростью ωω соотношением v = rω.v = rω. Здесь r = w / 2r = w / 2, так что v = (w / 2) ωv = (w / 2) ω и

    E = 2Bℓ (w2ω) sinωt = Bℓwωsinωt. E = 2Bℓ (w2ω) sinωt = Bℓwωsinωt.

    20,15

    Заметив, что площадь петли A = ℓwA = ℓw и учитывая N витков проводов, мы находим, что

    E = NABωsinωtE = NABωsinωt

    20.16

    - ЭДС, индуцированная в катушке генератора из N витков и площади A , вращающейся с постоянной угловой скоростью ωω в однородном магнитном поле B . Это также может быть выражено как

    E = E0sinωtE = E0sinωt

    20,17

    где

    - максимальная (пиковая) ЭДС.

    Рис. 20.27. Мгновенная скорость вертикальных отрезков провода составляет угол θθ с магнитным полем. Скорость показана на рисунке зеленой стрелкой, и указан угол θθ.

    На рис. 20.28 показан генератор, подключенный к лампочке, и график зависимости ЭДС от времени. Обратите внимание, что ЭДС колеблется от положительного максимума E0E0 до отрицательного максимума −E0. − E0. Между тем, ЭДС проходит через ноль, что означает, что в это время через лампочку протекает нулевой ток. Таким образом, лампочка на самом деле мигает с частотой 2 f , потому что за период происходит два перехода через ноль. Поскольку такой переменный ток используется в домах по всему миру, почему мы не замечаем мерцания света? В Соединенных Штатах частота переменного тока составляет 60 Гц, поэтому свет мигает с частотой 120 Гц.Это быстрее, чем частота обновления человеческого глаза, поэтому вы не заметите мерцания огней. Кроме того, другие факторы препятствуют такому быстрому включению и выключению различных типов лампочек, поэтому светоотдача немного сглаживается .

    Рис. 20.28 ЭДС генератора направляется на лампочку с показанной системой колец и щеток. График показывает зависимость ЭДС генератора от времени. E0E0 - пиковая ЭДС. Период равен T = 1 / f = 2π / ω, T = 1 / f = 2π / ω, где f - частота, с которой катушка вращается в магнитном поле.

    Виртуальная физика

    Генератор

    Используйте это моделирование, чтобы узнать, как работает электрический генератор. Управляйте подачей воды, которая заставляет водяное колесо вращать магнит. Это вызывает ЭДС в ближайшей катушке провода, которая используется для зажигания лампочки. Вы также можете заменить лампочку вольтметром, который позволяет увидеть полярность напряжения, которая меняется с положительной на отрицательную.

    Проверка захвата

    Установите количество проволочных петель равным трем, силу стержневого магнита примерно на 50 процентов и площадь петли на 100 процентов.Обратите внимание на максимальное напряжение на вольтметре. Предполагая, что одно основное деление на вольтметре составляет 5 В, какое максимальное напряжение при использовании только однопроводной петли вместо трехпроводной петли?

    1. 5 В
    2. 15 В
    3. 125 В
    4. 53 В

    В реальной жизни электрические генераторы сильно отличаются от рисунков в этом разделе, но принципы те же. Источником механической энергии, вращающей катушку, может быть падающая вода - гидроэнергия - пар, образующийся при сжигании ископаемого топлива, или кинетическая энергия ветра.Рисунок 20.29 показывает паровую турбину в разрезе; пар движется по лопастям, соединенным с валом, который вращает катушку внутри генератора.

    Рисунок 20.29 Паротурбинный генератор. Пар, образующийся при сжигании угля, ударяет по лопаткам турбины, вращая вал, соединенный с генератором. (Источник: Nabonaco, Wikimedia Commons)

    Еще одно очень полезное и распространенное устройство, использующее магнитную индукцию, называется трансформатором. Трансформаторы делают то, что подразумевает их название - они преобразуют напряжение из одного значения в другое; термин напряжение используется, а не ЭДС, потому что трансформаторы имеют внутреннее сопротивление.Например, многие сотовые телефоны, ноутбуки, видеоигры, электроинструменты и небольшие приборы имеют встроенный в подключаемый модуль трансформатор, который преобразует 120 В или 240 В переменного тока в любое напряжение, используемое устройством. На рисунке 20.30 показаны два разных трансформатора. Обратите внимание на катушки проводов, которые видны на каждом устройстве. Назначение этих катушек поясняется ниже.

    Рисунок 20.30 Слева - обычный трансформатор с многослойным сердечником, который широко используется в передаче электроэнергии и в электрических приборах.Справа - тороидальный трансформатор, который меньше трансформатора с многослойным сердечником для той же мощности, но более дорогой в изготовлении из-за оборудования, необходимого для наматывания проводов в форме пончика.

    На рисунке 20.31 показан трансформатор с многослойной обмоткой, который основан на законе индукции Фарадея и очень похож по конструкции на устройство Фарадея, которое использовалось для демонстрации того, что магнитные поля могут генерировать электрические токи. Две катушки с проволокой называются первичной и вторичной катушками.При нормальном использовании входное напряжение подается на первичную катушку, а вторичная обмотка создает преобразованное выходное напряжение. Железный сердечник не только улавливает магнитное поле, создаваемое первичной катушкой, но также его намагниченность увеличивает напряженность поля, что аналогично тому, как диэлектрик увеличивает напряженность электрического поля в конденсаторе. Поскольку входное напряжение переменного тока, изменяющийся во времени магнитный поток проходит через вторичную катушку, вызывая выходное напряжение переменного тока.

    Рисунок 20.31 Типичная конструкция простого трансформатора имеет две катушки, намотанные на ферромагнитный сердечник. Магнитное поле, создаваемое первичной катушкой, в основном ограничивается и увеличивается сердечником, который передает его на вторичную катушку. Любое изменение тока в первичной катушке вызывает ток во вторичной катушке.

    Ссылки на физику

    Магнитная веревочная память

    Чтобы отправить людей на Луну, программе Apollo пришлось спроектировать бортовую компьютерную систему, которая была бы надежной, потребляла мало энергии и была достаточно маленькой, чтобы поместиться на борту космического корабля.В 1960-х годах, когда была запущена программа Apollo, целые здания регулярно выделялись для размещения компьютеров, вычислительная мощность которых была бы легко превзойдена самыми простыми современными портативными калькуляторами.

    Для решения этой проблемы инженеры Массачусетского технологического института и крупного оборонного подрядчика обратились к запоминающему устройству с магнитным тросом , которое являлось ответвлением аналогичной технологии, использовавшейся до того времени для создания запоминающего устройства с произвольным доступом. В отличие от памяти с произвольным доступом, память с магнитным тросом была постоянным запоминающим устройством, которое содержало не только данные, но и инструкции.Таким образом, на самом деле это было больше, чем память: это была компьютерная программа, зашитая зашитой.

    Компонентами магнитной веревочной памяти были проволока и железные кольца, которые назывались сердечниками . Железные сердечники служили трансформаторами, как показано на предыдущем рисунке. Однако вместо того, чтобы наматывать провода несколько раз вокруг сердечника, отдельные провода пропускали через сердечники только один раз, создавая эти одновитковые трансформаторы. До 63 проводов на слова может проходить через одну жилу вместе с одним проводом бит .Если словарный провод проходит через данный сердечник, импульс напряжения на этом проводе вызывает в разрядном проводе ЭДС, которая интерпретируется как , . Если бы провод слова не проходил через сердечник, на разрядном проводе не наведалась бы ЭДС, что было бы интерпретировано как ноль .

    Инженеры будут создавать программы, которые будут жестко встраиваться в эти запоминающие устройства магнитного троса. Процесс подключения мог занять до месяца, так как рабочие кропотливо протягивали провода через одни жилы и вокруг других.Если были допущены какие-либо ошибки в программировании или подключении, отладка была бы чрезвычайно трудной, если не невозможной.

    Эти модули неплохо справились со своей задачей. Им приписывают исправление ошибки астронавта в процедуре посадки на Луну, что позволило «Аполлону-11» приземлиться на Луну. Сомнительно, чтобы Майкл Фарадей когда-либо мог представить себе такое применение магнитной индукции, когда открыл ее.

    Проверка захвата

    Если бы разрядный провод был дважды обмотан вокруг каждой жилы, как это повлияло бы на напряжение, индуцированное в разрядном проводе?

    1. Если количество витков вокруг провода удвоено, ЭДС уменьшается вдвое.
    2. Если количество витков вокруг провода удвоится, ЭДС не изменится.
    3. Если количество витков вокруг провода удваивается, то удваивается и ЭДС.
    4. Если количество витков вокруг провода удвоено, ЭДС в четыре раза превышает начальное значение.

    Для трансформатора, показанного на рисунке 20.31, выходное напряжение VSVS от вторичной обмотки почти полностью зависит от входного напряжения VPVP на первичной обмотке и количества петель в первичной и вторичной обмотках.Закон индукции Фарадея для вторичной обмотки дает наведенное выходное напряжение VSVS равным

    . VS = −NSΔΦΔt, VS = −NSΔΦΔt,

    20,19

    где NSNS - количество витков во вторичной катушке, а ΔΦ / ΔtΔΦ / Δt - скорость изменения магнитного потока. Выходное напряжение равно индуцированной ЭДС (VS = ES), (VS = ES) при небольшом сопротивлении катушки - разумное предположение для трансформаторов. Площадь поперечного сечения катушек одинакова с каждой стороны, как и напряженность магнитного поля, поэтому ΔΦ / ΔtΔΦ / Δt одинаковы с каждой стороны.Входное первичное напряжение VPVP также связано с изменением магнитного потока на

    VP = −NPΔΦΔt.VP = −NPΔΦΔt.

    20,20

    Из соотношения этих двух последних уравнений получаем полезное соотношение

    VSVP = NSNP (3,07) .VSVP = NSNP (3,07).

    20,21

    Это известно как уравнение трансформатора. Он просто заявляет, что отношение вторичного напряжения к первичному напряжению в трансформаторе равно отношению количества петель во вторичной катушке к количеству петель в первичной катушке.

    Передача электроэнергии

    Трансформаторы

    широко используются в электроэнергетике для повышения напряжения - так называемые повышающие трансформаторы - перед передачей на большие расстояния по высоковольтным проводам. Они также используются для понижения напряжения - так называемые понижающие трансформаторы - для подачи энергии в дома и на предприятия. Подавляющая часть электроэнергии вырабатывается с помощью магнитной индукции, когда катушка из проволоки или медный диск вращается в магнитном поле.Первичная энергия, необходимая для вращения катушек или диска, может быть получена различными способами. Гидроэлектростанции используют кинетическую энергию воды для привода электрогенераторов. Угольные или атомные электростанции создают пар для привода паровых турбин, вращающих змеевики. Другие источники первичной энергии включают ветер, приливы или волны на воде.

    После выработки энергии ее необходимо передать потребителю, что часто означает передачу мощности на сотни километров. Для этого напряжение силовой установки повышается с помощью повышающего трансформатора, который повышается, и ток уменьшается пропорционально, потому что

    Ptransmitted = ItransmittedVtransmitted⋅Ptransmitted = ItransmittedVtransmitted⋅

    20.22

    Более низкий ток ItransmittedItransmitted в передающих проводах снижает потери Джоулей , которые представляют собой нагрев провода из-за протекания тока. Этот нагрев вызван небольшим, но ненулевым сопротивлением RwireRwire проводов передачи. Потери энергии в окружающую среду из-за этого тепла составляют

    . Plost = Itransmitted2Rwire, Plost = Itransmitted2Rwire,

    20,23

    , который пропорционален текущему в квадрате в проводе передачи.Вот почему передаваемый ток ItransmittedItransmitted должен быть как можно меньше, и, следовательно, напряжение должно быть большим для передачи мощности Ptransmitted⋅Ptransmitted⋅

    Для передачи мощности на большие расстояния используются напряжения от 120 до 700 кВ. Напряжение повышается на выходе из электростанции повышающим трансформатором, как показано на рисунке 20.32.

    Рисунок 20.32 Трансформаторы изменяют напряжение в нескольких точках системы распределения электроэнергии.Электроэнергия обычно вырабатывается при напряжении более 10 кВ и передается на большие расстояния при напряжениях от 120 до 700 кВ для ограничения потерь энергии. Распределение электроэнергии по районам или промышленным предприятиям осуществляется через подстанцию ​​и передается на короткие расстояния с напряжением от 5 до 13 кВ. Оно снижено до 120, 240 или 480 В для безопасности на месте отдельного пользователя.

    После подачи электроэнергии в населенный пункт или промышленный центр напряжение на подстанции понижается до 5–30 кВ.Наконец, в частных домах или на предприятиях мощность снова понижается до 120, 240 или 480 В. Каждое повышающее и понижающее преобразование выполняется с помощью трансформатора, разработанного на основе закона индукции Фарадея. Мы прошли долгий путь с тех пор, как королева Елизавета спросила Фарадея, как можно использовать электричество.

    Электрические машины - генераторы и двигатели | Электродинамика

    11.2 Электрические машины - генераторы и двигатели (ESCQ4)

    Мы видели, что когда проводник перемещается в магнитном поле или когда перемещается магнит около проводника в проводнике течет ток.Величина тока зависит от:

    • скорость, с которой проводник испытывает изменяющееся магнитное поле,
    • количество витков, составляющих проводник, а
    • положение плоскости проводника по отношению к магнитному поле.
    Влияние ориентации проводника относительно магнитного поля проиллюстрирован на рисунке 11.1.

    Рисунок 11.1: Серия рисунков, показывающих, что магнитный поток, проходящий через проводник, зависит от от угла, который плоскость проводника составляет с магнитным полем.Величайший поток проходит через проводник, когда плоскость проводника перпендикулярна силовые линии магнитного поля, как на Рисунке 11.1 (а). Номер силовых линий, проходящих через проводник, уменьшается, так как проводник вращается до тех пор, пока он параллелен магнитному полю Рис. 11.1 (c).

    Если наведенная ЭДС и ток в проводнике были представлены как функция угла между плоскостью проводника и магнитным полем для проводника, имеющего постоянной скорости вращения, то наведенные ЭДС и ток будут варьируются, как показано на рисунке 11.2. Ток меняется около нуля. и известен как переменного тока (сокращенно AC).

    Рисунок 11.2: Изменение наведенной ЭДС и тока как угол между плоскостью проводника и проводником. магнитное поле меняется.

    Угол изменяется как функция времени, поэтому приведенные выше графики могут быть нанесены на временную ось. также.

    Вспомните закон Фарадея, о котором вы узнали в 11 классе:

    Закон Фарадея

    ЭДС, \ (\ mathcal {E} \), индуцированная вокруг одиночной петли проводника, пропорциональна скорость изменения магнитного потока φ через площадь, \ (A \) петли.Математически это можно выразить как:

    \ [\ mathcal {E} = -N \ frac {\ Delta \ phi} {\ Delta t} \]

    , где \ (\ phi = B · A \ cos \ theta \) и \ (B \) - напряженность магнитного поля.

    Закон Фарадея связывает наведенную ЭДС со скоростью изменения магнитного потока, который является произведением напряженности магнитного поля и поперечного сечения область, через которую проходят силовые линии. Площадь поперечного сечения изменяется при вращении петли проводника. что дает фактор \ (\ cos \ theta \).\ (\ theta \) - угол между нормаль к поверхности витка проводника и магнитному полю. Когда проводник замкнутого контура меняет ориентацию по отношению к магнитному полю, величина магнитного потока, проходящего через область контура, изменяется, и в проводящем контуре индуцируется ЭДС.

    Электрогенераторы (ESCQ5)

    Генератор переменного тока (ESCQ6)

    Используется принцип вращения проводника в магнитном поле для генерации тока. в электрических генераторах.Генератор преобразует механическую энергию (движение) в электрическую.

    Генератор

    Генератор - это устройство, преобразующее механическую энергию в электрическую.

    Схема простого генератора переменного тока показана на рисунке 11.3. Проводник представляет собой катушку с проволокой, помещенную в магнитное поле. В проводник вручную вращается в магнитном поле. Это порождает чередование ЭДС.Переменный ток нужно передать от проводника к нагрузке, это система, для функционирования которой требуется электрическая энергия.

    Нагрузка и проводник соединены контактным кольцом. Скользящее кольцо это соединитель, который может передавать электричество между вращающимися частями машины. Он состоит из кольца и щеток, одна из которых неподвижна. по отношению к другому. Здесь кольцо прикрепляется к проводнику и щеткам. прикреплены к нагрузке.Ток генерируется во вращающемся проводнике, проходит в контактные кольца, которые вращаются против щеток. Ток передается через щетки в нагрузку, и, таким образом, система получает питание.

    Рисунок 11.3: Схема генератора переменного тока.

    Направление тока меняется с каждой половиной оборота катушки. Когда одна сторона петли переходит в другую полюс магнитного поля, ток в контуре меняет направление.Этот тип тока, который меняет направление, известен как переменный. current, а на рис. 11.4 показано, как это происходит. как проводник вращается.

    Рисунок 11.4: Красные (сплошные) точки обозначают ток, исходящий со страницы, а крестики показывают текущий ток. переходя на страницу. Генераторы переменного тока

    также известны как генераторы переменного тока. Они используются в легковых автомобилях для зарядки автомобильного аккумулятора.

    Генератор постоянного тока (ESCQ7)

    Простой генератор постоянного тока устроен так же, как генератор переменного тока, за исключением того, что представляет собой одно контактное кольцо, которое разделено на две части, называемые коммутатором, поэтому ток в внешняя цепь не меняет направление.Схема генератора постоянного тока показана на Рисунок 11.5. Коммутатор с разъемным кольцом учитывает изменение направление тока в контуре, создавая тем самым постоянный ток (DC), проходящий через щетки и в цепь. Ток в петле меняет направление, но если вы посмотрите Внимательно изучив 2D-изображение, вы увидите, что секция коммутатора с разъемным кольцом также изменилась. какой стороны цепи он касается. Если ток одновременно меняет направление что коммутатор меняет местами стороны внешней цепи всегда будет иметь ток, идущий в в том же направлении.

    Рисунок 11.5: Схема генератора постоянного тока.

    Форма ЭДС от генератора постоянного тока показана на рисунке 11.6. ЭДС не является постоянной, но представляет собой абсолютное значение синусоидальной / косинусоидальной волны.

    Рисунок 11.6: Изменение ЭДС в генераторе постоянного тока.

    Генераторы переменного и постоянного тока (ESCQ8)

    Проблемы, связанные с замыканием и размыканием электрического контакта с движущейся катушкой, - это искрение и нагрев, особенно если генератор вращается с высокой скоростью.Если атмосфера, окружающая машину, содержит легковоспламеняющиеся или взрывоопасные пары, практические проблемы искрообразования щеточных контактов еще больше.

    Если вращается магнитное поле, а не катушка / проводник, то в генераторе переменного тока (генераторе переменного тока) щетки не нужны, поэтому генератор переменного тока не будет иметь тех же проблем, что и генераторы постоянного тока. Те же преимущества переменного по сравнению с постоянным током для конструкции генератора применимы и к электродвигателям. В то время как электродвигатели постоянного тока нуждаются в щетках для электрического контакта с движущимися катушками провода, электродвигатели переменного тока этого не делают.Фактически, конструкции двигателей переменного и постоянного тока очень похожи на их аналоги-генераторы. Электродвигатель переменного тока зависит от реверсивного магнитного поля, создаваемого переменным током через его неподвижные катушки с проволокой, заставляющими магнит вращаться. Двигатель постоянного тока зависит от замыкания и размыкания щеточных контактов. соединения для обратного тока через вращающуюся катушку каждые 1/2 оборота (180 градусов).

    Электродвигатели (ESCQ9)

    Основные принципы работы электродвигателя такие же, как и у генератора, за исключением того, что электродвигатель преобразует электрическую энергию в механическую энергию (движение).

    Электродвигатель

    Электродвигатель - это устройство, преобразующее электрическую энергию в механическую.

    Если поместить движущуюся заряженную частицу в магнитное поле, она испытал бы силу под названием сила Лоренца .

    Сила Лоренца

    Сила Лоренца - это сила, испытываемая движущейся заряженной частицей в электрическом и магнитное поле.{-1} $} \)) и \ (B \) - напряженность магнитного поля (в теслах, Тл).

    На этой диаграмме показано движение положительного заряда между двумя противоположными полюсами магнитов. В направление движения заряда указано оранжевой стрелкой. Он испытает Сила Лоренца, которая будет направлена ​​зеленой стрелкой.

    Токоведущий провод, в котором ток идет в направлении оранжевого стрелка, также будет испытывать магнитную силу, зеленая стрелка, из-за Лоренца сила на движущиеся отдельные заряды в текущем потоке.

    Если направление тока обратное для того же направления магнитного поля, то направление магнитной силы также будет обратным, как показано на этой диаграмме.

    Мы можем, если есть два параллельных проводника с током в противоположных направлениях. будут испытывать магнитные силы в противоположных направлениях.

    Электродвигатель работает за счет использования источника ЭДС, заставляя ток течь по петле проводник так, чтобы сила Лоренца на противоположных сторонах петли была противоположной направления, которые могут вызвать вращение петли вокруг центральной оси.

    Сила, действующая на проводник с током из-за магнитного поля, называется законом Ампера.

    Направление магнитной силы перпендикулярно обоим направлениям потока. тока и направления магнитного поля и можно найти используя Правило правой руки , как показано на рисунке ниже. Используйте свой правая ; ваш первый палец указывает в сторону ток, второй палец по направлению магнитного поля и большой палец будет указывать в направлении силы.

    И двигатели, и генераторы можно объяснить с помощью катушки, вращающейся в магнитном поле. В генераторе катушка присоединена к внешней цепи, которая вращается, что приводит к изменению потока, вызывающему ЭДС. В двигателе катушка с током в магнитном поле испытывает силу с обеих сторон катушки, создавая крутящую силу (называемую крутящим моментом , , произносится как «разговор»), которая заставляет ее вращаться.

    Если используется переменный ток, для создания двигателя переменного тока требуются два контактных кольца.Двигатель переменного тока показан на рисунке 11.7

    .

    Рисунок 11.7: Схема двигателя переменного тока.

    Если используется постоянный ток, для создания двигателя постоянного тока требуются коммутаторы с разъемным кольцом. Это показано на рисунке 11.8.

    Рисунок 11.8: Схема двигателя постоянного тока.

    Реальные приложения (ESCQB)

    Автомобили

    В автомобиле есть генератор. Когда двигатель автомобиля работает, Генератор заряжает аккумулятор и питает электрическую систему автомобиля.

    Генераторы

    Постарайтесь выяснить, какие значения тока вырабатываются генераторами переменного тока для разных типов машин. Сравните их, чтобы понять, какие числа имеют смысл в реальном мире. Вы найдете разные значения для автомобилей, грузовиков, автобусов, лодок и т. Д. Попытайтесь выяснить, какие другие машины могут иметь генераторы переменного тока.

    Автомобиль также содержит электродвигатель постоянного тока, стартер, который вращает двигатель и запускает его. Стартер состоит из очень мощного электродвигателя постоянного тока и соленоида стартера, прикрепленного к двигателю.Стартерному двигателю требуется очень большой ток для запуска двигателя, и он соединен с аккумулятором с помощью больших кабелей для передачи большого тока.

    Производство электроэнергии

    Для производства электроэнергии для массового распределения (в дома, офисы, фабрики и т. д.) обычно используются генераторы переменного тока. Электроэнергия, производимая массивными Электростанции обычно имеют низкое напряжение, которое преобразуется в высокое напряжение. это эффективнее распределять электроэнергию на большие расстояния в виде высоких напряжение в линиях электропередач.

    Затем высокое напряжение снижается до 240 В для потребления в домах и офисах. Этот обычно делается в пределах нескольких километров от того места, где он будет использоваться.

    Рисунок 11.9: Генераторы переменного тока используются на электростанциях (все типы, гидро- и угольные станции) для выработки электроэнергии.

    Ты справишься! Позвольте нам помочь вам учиться с умом для достижения ваших целей. Siyavula Practice направит вас в удобном для вас темпе, когда вы задаете вопросы в Интернете.

    Зарегистрируйтесь, чтобы улучшить свои оценки

    Генераторы и двигатели

    Упражнение 11.1

    Укажите разницу между генератором и двигателем.

    Электрический генератор - это механическое устройство для преобразования энергии источника в электрическую.

    Электродвигатель - это механическое устройство для преобразования электрической энергии из источника в энергию другого вида.

    Используйте закон Фарадея, чтобы объяснить, почему в катушке, вращающейся в магнитном поле, индуцируется ток.

    Закон Фарадея гласит, что изменяющийся магнитный поток может индуцировать ЭДС, когда катушка вращается в магнитном поле. Вращение может изменять магнитный поток, тем самым вызывая ЭДС.

    Если вращение катушки такое, что поток не меняется, т.е. поверхность катушки остается параллельно магнитному полю, то наведенной ЭДС не будет.

    Объясните основной принцип работы генератора переменного тока, в котором катушка механически вращается в магнитном поле.Нарисуйте диаграмму, подтверждающую ваш ответ.

    Решение пока недоступно

    Объясните, как работает генератор постоянного тока. Нарисуйте диаграмму, подтверждающую ваш ответ. Также опишите, чем генератор постоянного тока отличается от генератора переменного тока.

    Решение пока недоступно

    Объясните, почему катушка с током, помещенная в магнитное поле (но не параллельно полю), будет вращаться. Обратитесь к силе, действующей на движущиеся заряды со стороны магнитного поля и крутящего момента на катушке.

    Катушка с током в магнитном поле испытывает силу с обеих сторон катушки, параллельно магнитному полю, создавая крутящую силу (называемую крутящим моментом), которая заставляет его вращаться. Любая катушка, по которой проходит ток, может ощущать силу в магнитном поле. Сила обусловлена Магнитная составляющая силы Лоренца на движущихся зарядах в проводнике, называемая законом Ампера. Сила на противоположных сторонах катушки будет в противоположных направлениях, потому что заряды движется в противоположных направлениях.

    Объясните основной принцип работы электродвигателя. Нарисуйте диаграмму, подтверждающую ваш ответ.

    Решение пока недоступно

    Приведите примеры использования генераторов переменного и постоянного тока.

    Автомобили (как переменного, так и постоянного тока), производство электроэнергии (только переменного тока), везде, где требуется электропитание.

    Приведите примеры использования двигателей.

    Насосы, вентиляторы, бытовая техника, электроинструменты, бытовая техника, оргтехника.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *