Как сделать ветряной генератор: Как самому сделать ветрогенератор?

Содержание

Как сделать ветрогенератор - правила изготовления домашнего ветрогенератора своими руками

Если у вас нет доступа к общей электрической сети, либо вы решили обзавестись автономным источником энергии, то целесообразно установить домашний ветрогенератор. Сила потока воздушных масс позволит вам своими руками наладить поступление электроэнергии для бытовых нужд.

Как работает ветрогенератор?

Прежде, чем самому собирать и устанавливать ветрогенератор, необходимо определить, имеет ли это смысл. Для этого необходимо измерить скорость ветра в той местности, где вы решили выполнить установку.  Если окажется, что ветровой силы недостаточно, то устанавливать генератор невыгодно.

Помимо скорости ветра, нужно определить, какой уровень мощности генератора необходим. Конечно же, не стоит полагать, что генератор данного типа будет функционировать круглосуточно без перебоев, ведь скорость ветра может сильно меняться в течении дня, и это повлияет на возникновение энергетических проблем.

Возможную мощность генератора вы сможете определить с помощью расчета коэффициента использования энергии ветра. Он позволяет оценить часть энергии воздушного потока, которая будет использоваться ветроколесом.  Данный показатель зависит от различных внешних параметров.

Если вы делаете ветрогенератор своими руками, то следует знать его основные составляющие:

  • ветроколесо с определенным количеством лопастей
  • редуктор, который отвечает за круговое движение колеса
  • мачта, при помощи которой ветряные потоки поступают в инвертор, чтобы превратиться в ток

Само электричество берется из энергии ветра, которая приводит в движение лопасти с колесом. Круговые манипуляции передаются с помощью редуктора в генераторный вал. Именно там происходит превращение энергии механического типа в электрическую.

Из каких элементов состоит домашний ветрогенератор?

Чтобы сделать генератор в домашних условиях, необходимо приобрести все его комплектующие:

  • аккумулятор на кислотной или гелиевой основе
  • ротор
  • генератор
  • ведро или бочка из металла большого размера
  • полугерметичная кнопка (выполняет роль выключателя)
  • специальные болты
  • реле для подзарядки аккумулятора
  • реле лампы заряда
  • вольтметр
  • мачта
  • нержавеющая проволока
  • провода
  • специальная коробка для наружных проводов

С помощью данного оборудования и запчастей у вас получится сделать ветрогенератор своими руками.

Сколько лопастей должно быть у ветрогенератора?

Одним из самых важных этапов в создании ветрогенератора является этап подбора и прикрепления лопастей. Количество, качество и габариты каждой лопасти оказывают сильное влияние на будущую работу всего устройства. Существует несколько основных принципов, которые необходимо учитывать при сборке конструкции данного типа:

  • при установке двух-трех лопастей большого размера неправильно считать, что мощность генератора равна показателю с пятью-шестью небольшими лопастями
  • при устройстве генератора с малым количеством лопастей необходимо уделять большое внимание балансу, лопасти большей площади дают сильную вибрацию
  • от размеров лопастей напрямую зависит уровень шума, издаваемого установкой, чем больше будет скорость и окружность вращения лопастей, тем сильнее вы будете это слышать, а при установке такого генератора в частном доме вы будете часто просыпаться по ночам
  • если вы создаете быстроходные лопасти, то необходимо учитывать особые требования к их конструкции, лучше всего сделать лопасти из разрезанной трубы КИЭВ

При использовании габаритных лопастей достаточно много нагрузки приходится на ось генератора, мачту и все его составляющие. Использование такой установки небезопасно, поскольку при сильном ветре лопасти разгоняются до огромной скорости, а мачта или крепления, скорее всего, этого не выдержат. Если же вы все-таки решили сделать ветрогенератор именно такого типа, то лучше всего использовать дерево в качестве материала лопастей. Однако, их изготовление из этого материала является достаточно затруднительным.

Мощность ветрогенератора напрямую зависит от размера колеса с лопастями, скорости воздушных масс и высоты мачты. Нужно понимать, что энергии будет больше того после того, как вы найдете идеальный баланс для всей конструкции. Если устанавливать две-три лопасти большого размера, то мощность будет небольшой, а сама конструкция будет достаточно хрупкой.  Наиболее удобным и правильным вариантом является установить своими руками пять или шесть лопастей умеренного размера.

Этапы создания ветрогенератора своими руками

После того, как большая часть конструктивных элементов мелкого типа подобрана, можно приступать к сборке ветрогенератора:

  • сначала необходимо выбрать тип генератора, нужно опередить, будет у вас горизонтальный или вертикальный тип двигателя, сделать своими руками проще ветрогенератор вертикального типа, поскольку в нем значительно легче налаживать балансировку
  • при покупке генератора нужно смотреть на его мощность
  • после проведения всех расчетов нужно выбрать аккумулятор, он должен быть герметического типа и предназначаться специально для энергетических установок
  • прежде, чем устанавливать все устройство, нужно залить фундамент, он должен соответствовать особенностям внешней среды
  • мачта устанавливается после полного затвердевания фундамента
  • собирается ротор - предварительно ротор необходимо подбирать в зависимости от средней скорости ветра, скорость влияет на диаметр данного элемента
  • к ротору приделывается шкив
  • лопасти можно сделать, как из трубы, так и из бочки, расчет их площади сугубо индивидуален
  • провода из алюминия присоединяются к генератору
  • необходимо собрать цепь в дозе
  • осуществляется крепление генератора к мачте, а после и проводов
  • генератор и аккумулятор собираются в единую цепь, и к ним подключается нагрузка через провода

Хороший запуск генератора получается выполнить только в условиях высокой скорости ветра. Чтобы увеличить выработку энергии, можно сделать своими руками трансформатор с регулятором. Это обеспечит большую силу тока.

Основные условия эксплуатации самодельного ветрогенератора

Как и за любым прибором, за ветряным генератором требуется регулярный уход. Благодаря грамотному уходу за самодельной станцией вы сможете эксплуатировать генератор очень долго. Существуют ключевые виды работ, которые необходимо выполнять каждый год:

  • уход за всеми подвижными элементами системы путем их смазывания
  • проверка лопастей и подшипников с целью своевременного обнаружения их повреждений
  • регулировка всех электрических соединений
  • проверка механизмов ветрогенератора на отсутствие коррозии
  • регулировка ослабленных растяжек и подкрутка расшатанных болтов
  • осуществление покраски металлических деталей генератора
  • проверка щетки токоприемника

При оптимальных условиях эксплуатации и качественной сборке самодельный ветрогенератор может прослужить более 10-15 лет. Нужно понимать, что для создания прибора такого типа очень важны первоначальные исследования и расчеты. Ведь именно по ним будет создаваться вся установка.

Ветрогенератор своими руками для частного дома

«Нам электричество сделать всё сумеет …» — так пели студенты электротехнических ВУЗов середины прошлого века. В этой юмористической «оде» электричеству отведено много фантастики, но сегодня мы можем с уверенностью сказать, что современный человек без электричества просто пропал бы. Если свечи и могли бы нам заменить «лампочку Ильича», то как быть со всем остальным?

К настоящему времени человеком открыты разные способы получения электрического тока:

  • гальванические элементы, в которых химическая энергия преобразуется в электрическую;
  • термогенераторы, в которых в электричество преобразуется тепловая энергия;
  • солнечные батареи, где в электроэнергию преобразуется солнечная энергия.

Каждый из таких источников имеет свои достоинства и недостатки. Однако преимущественное распространение получили генераторы, в которых механическая энергия преобразуется в энергию переменного электрического тока. Это так называемые индукционные генераторы, действие которых основано на явлении электромагнитной индукции.

Немного истории и теории

Вспомним немного школьный курс физики, из которого нам известно, что явление электромагнитной индукции было открыто в 1831 году английским физиком Майклом Фарадеем. А заключается оно в следующем: при всяком изменении магнитного потока, пронизывающего замкнутый проводящий контур, в этом контуре возникает электрический ток.

То есть в простейшем виде такой генератор выглядит как рамка, помещенная в поле постоянного магнита, вращающаяся под действием механической силы. Однако такой тип генератора переменного тока с неподвижной магнитной системой (индуктором) и вращающимися витками проводника (якорем) применяется очень редко. Связано это с тем, что для отведения тока от движущейся катушки требуются подвижные контакты, а при токе высокого напряжения в таких контактах будет иметь место сильное искрение. Поэтому в подавляющем большинстве индукционных генераторов переменного тока обмотку (якорь), в которой наводится ток, делают неподвижной и называют статором, а вращают магнитную систему (индуктор), который называют ротором. В мощных генераторах магнитное поле создают обычно с помощью электромагнита, питаемого от источника постоянного тока — возбудителя.

Однако с появлением магнитов из сплава неодим-железо-бор, которые по своим характеристикам значительно превосходят другие виды постоянных магнитов, появилась возможность изготавливать ротор генератора на основе постоянных магнитов. Неодимовые магниты, разработанные в 70–80-е годы прошлого века, отличаются высокими и стабильными магнитными свойствами при малых размерах.

Теперь несколько слов о механической энергии, которую генератор преобразует в электричество. Для вращения ротора генератора используются энергия воды (гидрогенераторы), энергия пара (парогенераторы). Существуют генераторы, работающие от дизельных и бензиновых двигателей внутреннего сгорания. Забота же об окружающей среде и об экономии собственных средств заставила человека вспомнить о таком «неутомимом работнике» как ветер. С незапамятных времен люди использовали энергию ветра для движения кораблей и для превращения зерна в муку. Современные ветряные двигатели для электрогенераторов ведут свою родословную именно от ветряных мельниц. Соединив ветряной двигатель (ветряк) с электрогенератором, изготовленным с применением современных магнитов, получим ветрогенератор на неодимовых магнитах — экологически безопасный и экономичный источник электрической энергии.

Чем хорош ветрогенератор

Сегодня даже заядлый скептик не будет оспаривать пользу этого вида источников переменного тока.

Конечно, величины напряжения, мощности и тока, полученных от генератора для ветряка, сделанного своими руками не позволят запитать все электроприборы в достаточно большом загородном доме. Но вот снабдить электричеством небольшой дачный домик, особенно если он расположен далеко от электрической сети, вполне рациональное решение. И даже если только часть потребляемой электроэнергии для дома вы получите от ветряка, то в перспективе экономия будет ощутимой.

Кроме того, сделать генератор для ветряка — это интересная творческая работа, выполнив которую вы по праву сможете гордиться собой.

Из чего состоят ветрогенераторы и какие они бывают?

Обязательными элементами такого ветрогенератора на магнитах являются:

1)    Мачта, на которой установлены ветровое колесо и генератор. Ее высота выбирается исходя их конкретных природных условий и потребностей человека.

2)    Двигатель для ветряка — ветровое колесо с лопастями, которое преобразует движение ветра во вращательное движение вала ротора генератора.

3)    Генератор, вырабатывающий переменный электрически ток, величина которого зависит и от параметров статора и ротора генератора, и от скорости вращения ветрового колеса, дающего движение ротору.

Кроме того в состав системы могут входить ряд вспомогательных устройств, обеспечивающих управление работой системы и улучшающие качество получаемого тока: контроллер, аккумуляторные батареи, преобразователи, стабилизаторы.

В зависимости от направления оси вращения различают два типа ветрогенераторов — вертикальные и горизонтальные.

Горизонтальные (пропеллерные) имеют больший КПД, но они более сложны по конструкции, так как включают систему, ориентирующую пропеллер по ветру. Изготовление таких ветрогенераторов сложнее, а работают они только при достаточно больших скоростях ветра. Кроме того, ветряки с горизонтальной осью вращения требуют достаточно большого пространства, а модели с вертикальной осью вращения значительно компактнее.

Вертикальные ветряки проще по конструкции, дешевле, но их КПД ниже.

Но обратимся к сердцу любого ветряка — электрогенератору переменного тока, ротор которого выполнен на неодимовых магнитах.

Как собрать генератор на магнитах

Собираем ротор

Ротор такого магнитного ветрогенератора конструктивно представляет собой сборку из двух стальных дисков, расположенных параллельно друг другу. Диски жестко скреплены между собой через распорную втулку и установлены на валу, вращение которого обеспечивает турбина ветряка. Можно рекомендовать сделать ротор из автомобильной ступицы в сборе с тормозными дисками. Это надежная и хорошо сбалансированная основа для ротора. Дешевле будет взять б/у ступицу. В этом случае ее необходимо разобрать, тщательно почистить, проверить и смазать подшипники. Можно диски для ротора изготовить самостоятельно из низкоуглеродистой стали. Конечно, можно взять и другой материал, но следует учесть, что при использовании немагнитного материала эффективность генератора значительно снижается.

По периметру каждого диска располагаются магниты. Какие магниты нужны для ветрогенератора? Можно взять дисковые, прямоугольные, но наилучший эффект дают неодимовые магниты-сектора. Их размер и количество могут быть разными в зависимости от вашей цели и возможностей. Однако число пар полюсов магнитов должно быть четным, причем для однофазного генератора их должно быть столько же, сколько и катушек в статоре, а для трехфазного — четыре или две пары на три катушки. Магниты по периметру диска устанавливаются с чередованием полюсов: N–S–N–S…. Для этого предварительно следует изготовить шаблон, где точно обозначить место каждого магнита.

Размеры дисков ротора рассчитываются, исходя из размеров магнитов и их количества. Толщина диска для ротора должна быть порядка толщины магнита.

Магниты приклеиваются к диску суперклеем, а затем диск заливается эпоксидной смолой. Чтобы избежать ее стекания по внутренней и наружной окружности диска делаются бортики из скотча, пластилина или другого подручного материала. Перед тем, как залить диск эпоксидкой рекомендуем пометить на каждом диске по магниту, полюса которых направлены встречно, чтобы затем не перепутать при сборке. При сборке генератора следует следить за тем, чтобы магниты на дисках ротора располагались точно напротив и были направлены противоположными полюсами друг к другу. Схематический чертеж ротора ветряка с распределением магнитных силовых линий представлен на рис. 1.

 

Рис. 1

Изготовление статора ветрогенератора

Теперь сформированное магнитное поле нужно преобразовать в электричество. Для этого служит статор — неподвижная обмотка из медного провода, расположенная так, чтобы силовые магнитные линии, образуемые магнитами ротора, при его вращении пересекали провода обмотки.

Статор генератора располагается в зазоре между дисками ротора. Состоит он из неподвижных плоских катушек без сердечников. В каждой катушке при пересечении силовыми линиями магнитного поля возникает ЭДС индукции, переменная по величине и направлению. Величина напряжения, значит, и эффективность ветрогенератора, зависят от скорости вращения ротора, от количества витков в каждой катушке, от числа самих катушек и диаметра медного провода, используемого для их изготовления.

Генератор может быть однофазным или трехфазным. Первый проще, но второй предпочтительнее по двум причинам. Во-первых, в ветряке с трехфазной схемой генератора отсутствуют вибрации, которыми в нагруженном состоянии грешит однофазный. Кроме того, трехфазный генератор эффективнее однофазного более чем в 1,5 раза.

Расчет числа и параметров катушек для ротора ведется исходя из числа магнитов, их ширины, выбранного соотношения 4/3, или 2/3 и диаметра провода.

Если для обмотки взять тонкий провод, то катушки статора можно намотать с большим количеством витков, напряжение на выходе генератора будет более высоким, но его нагрузочная способность ниже. При использовании более толстого провода с меньшим сопротивлением в зазоре для статора поместятся обмотки с меньшим числом витков, в результате выходное напряжение будет ниже, но выше нагрузочная способность. Форма катушек определяется формой магнитов, а оптимальной толщиной статора считается величина, равная толщине магнитов. Число витков каждой катушки получается делением общего числа витков обмотки на число катушек, а общее число витков обмотки статора определяется, исходя из ЭДС, величины магнитной индукции, средней скорости вращения ротора.

Намотав катушки, их раскладывают на предварительно подготовленном шаблоне с размеченными секторами, соединяют между собой в зависимости от выбранной схемы. В однофазном варианте все катушки соединяются между собой последовательно. При этом нужно учесть, что токи в соседних катушках будут иметь противоположные направления, поэтому соединяются начало с началом соседней, а конец с концом следующей. Провода от начала первой и конца последней катушек выводятся наружу. При трехфазном варианте между собой соединяются каждая третья катушка. Провода каждой фазы выводятся наружу и впоследствии соединяются звездой или треугольником. Схемы соединения обмоток генератора представлены на рис. 2.

Рис. 2

Для прочности под катушки и на них кладется стеклоткань, и вся конструкция заливается эпоксидной смолой. После ее застывания сверлятся отверстия для крепежных болтов.

Оба диска ротора устанавливаются на валу с двух сторон от статора на расчетном расстоянии, на передний диск ротора крепится ветроприемное устройство.

Заглянем в будущее

Человеческая мысль не стоит на месте и самые распространенные сегодня горизонтальные ветрогенераторы постепенно уступают свое место вертикальным. Связано это с появлением технологии магнитной левитации, или так называемых ветрогенераторов на магнитной подушке. В такой конструкции лопасти крыльев при малых габаритах максимально используют энергию ветра, то есть КПД тут будет значительно выше.

Первенство в применении этой технологии принадлежит китайцам, но сейчас во многих странах мира инженеры работают над созданием мощных ветрогенераторов с магнитной левитацией, позволяющих осуществить переход к источникам возобновляемой энергии в промышленном масштабе.

как сделать своими руками тихоходное устройство, его преимущества и недостатки

Генератор для ветряка из автогенератора

Генератор является таким же основным элементом ветряка, как и крыльчатка. Если лопасти рабочего колеса преобразуют энергию ветра во вращательное движение, то генератор вращение превращает в электроэнергию. Его конструкция и возможности определяют производительность и мощность установки, способность работы на слабых потоках ветра.

При изготовлении ветряков вопрос об использовании самодельного или готового генератора встает практически всегда. Чаще всего к решению подходят комбинированным способом — используют готовый автомобильный генератор, иногда без конструктивных изменений, но чаще всего — с некоторыми доработками, повышающими чувствительность или выходную мощность.

Автомобильные генераторы представляют собой готовые устройства, созданные для выработки электрического тока заданного напряжения. Оно постоянно на выходе, что обеспечивает стабилизатор (регулятор) напряжения, удерживающий значения в узких рамках. Единственная особенность, требующая вмешательства, это режим работы — автомобильные генераторы приводятся от двигателя и работают на больших скоростях.

Причем, скорость вращения двигателя автомобиля не постоянна, она меняется на протяжении всего времени работы в значительных пределах — от 800 об/мин до 6000 об/мин, а иногда и больше. Кроме того, автомобильный генератор имеет предел по силе тока, превысить который устройство не сможет ни при каких обстоятельствах.

КПД автогенераторов не превышает 60%, что объясняется наличием потерь в конструкционных узлах, расходом энергии на токи Фуко. Чем выше общая мощность устройства, тем выше его КПД. Производится переменный ток, который преобразуется в постоянный при помощи диодного выпрямителя.

Преимущества и недостатки

Использование автомобильного генератора как элемента ветроэлектростанции дает существенные преимущества:

  • Имеется готовый генератор, который может использоваться без вмешательства в конструкцию или с некоторой модернизацией.
  • Автомобильный генератор выдает стабильное напряжение, что важно для ветряков с их постоянно меняющейся скоростью вращения.
  • Используется стандартное оборудование, доступное и не нуждающееся во вмешательстве в конструкцию.
  • Автомобильные генераторы широко распространены, что делает их ремонтопригодными и доступными для замены при необходимости.

Наряду с достоинствами имеются и некоторые недостатки:

  • Автомобильный генератор нуждается в высокой скорости вращения, что требует использования повышающего редуктора или изменений в конструкции устройства.
  • Ресурс автомобильного генератора ограничен примерно 4000 часами работы (в среднем). Даже новый генератор не выдержит и года непрерывной работы и потребует ремонта.
  • Система возбуждения некоторых генераторов требует подачи напряжения на катушку, что вынуждает изменять конструкцию и устанавливать постоянные магниты.

Несмотря на имеющиеся недостатки, автомобильный генератор считается оптимальным вариантом, возможным при самостоятельном создании ветроэлектростанции.

Как сделать своими руками?

Изготовление ветрогенератора складывается из двух основных этапов:

  • Создание вращающегося ротора с лопастями.
  • Изготовление или модернизация генератора, приводимого во вращение крыльчаткой.

Изготовление крыльчатки требует отдельного подробного описания, так как существует масса вариантов конструкции, выбор наиболее подходящего из них требует определенных познаний и опыта.

Изготовление генератора своими руками требует четкого знания принципа работы устройства, обладания навыками, материалами и необходимыми инструментами. Для ускорения процесса и получения более качественного результата надо использовать готовое устройство, нуждающееся в небольших вмешательствах в конструкцию. Это поможет сэкономить время, усилия и получить устройство с заранее известными параметрами.

Обычным изменением, которое приходится вносить в конструкцию генератора, является установка постоянных неодимовых магнитов вместо обмотки возбуждения. Этот вариант создает возможность самовозбуждения и повышает производительность генератора, но нередко создает эффект залипания, затрудняющий старт вращения ротора.

Также часто изменяют число витков обмотки, индуцирующей ток. Таким образом повышается чувствительность устройства, создается возможность генерации тока на низких скоростях вращения. Примечательно, что все переделки производятся достаточно просто и не требуют глубокого вмешательства в конструкцию. Меняется количество витков и толщина провода обмотки.

Тихоходный генератор

Наиболее предпочтительна конструкция генератора, способного производить ток при малых оборотах. Скорость ветра в регионах России в большинстве средняя и низкая, создать номинальную скорость вращения для автомобильного генератора чрезвычайно сложно. Потребуется установка повышающего редуктора, который будет существенно уменьшать чувствительность.

Вариантов решения вопроса может быть несколько:

  • Модернизация автомобильного генератора.
  • Использование магнето в качестве основы для создания генератора.
  • Создание быстроходного ротора, способного обеспечить необходимый режим работы генератора.

Первый вариант используется чаще всех в силу своей простоты и доступности, хотя изменения, вносимые в конструкцию, требуют использования производственного оборудования (токарный станок), приобретения супермагнитов (неодимовых) и изменения числа витков обмотки статора.

Применение магнето вызывает немало споров, хотя причиной для них становится неподготовленность. Конструкция магнето позволяет создать производительный и относительно тихоходный генератор, требуется лишь изменить параметры трансформатора на соответствующие режиму вращения имеющегося ветряка.

Изготовление быстроходных крыльчаток возможно при наличии естественных условий — наличие достаточно сильных и ровных ветров в регионе. Такое имеется не везде, в большинстве районов ветра слабые и имеют эпизодический характер.

Ветрогенератор из тракторного генератора Г-700

Тракторный генератор Г-700 имеет следующие номинальные параметры:

  • Напряжение — 14 В.
  • Сила тока — до 50 А.
  • Скорость вращения — 5000 об/мин (номинальная), 6000 об/мин (максимальная).

Ротор ветряка не сможет обеспечить такую частоту вращения, поэтому потребуется перемотать обмотку статора для того, чтобы обеспечить нужную производительность при низкой скорости вращения. Для этого надо использовать более тонкий провод, чтобы увеличить число витков в катушках. Обычно используется провод толщиной 0,8 мм, число витков делается максимальным, сколько сможет вместить корпус статора. Обычно делается не менее 80 витков.

Катушка возбуждения также подлежит доработке. Обмотка перематывается таким же проводом, добавляется до 250 витков. В результате получается устройство практически с исходными параметрами, но способное работать на низких скоростях вращения.

После доработки генератор устанавливается на ротор ветряка, испытывается на производительность и чувствительность в рабочем режиме. При необходимости параметры обмоток могут быть изменены, оптимальный режим находится опытным путем на основании эксплуатационных показателей.

Ветряк из автогенератора от бычка

Неплохие результаты показывает автомобильный генератор от грузовика «Бычок». Понадобится перемотать обмотку статора проводом 0,6 мм (получено опытным путем), для трехфазной обмотки понадобится около 90 витков на каждую катушку, всего 18 шт.

Ротор генератора подлежит некоторой доработке — на токарном станке стачивается толщина (диаметр) для того, чтобы получить пространство под неодимовые магниты. Исследования показывают, что наилучший результат достигается при большом числе магнитов.

При этом, необходимо избегать сильного залипания, что можно регулировать увеличением расстояния от магнитов до сердечников статора. Имеется возможность добиться минимального залипания при максимальном выходном напряжении, что потребует некоторых затрат времени, по поможет получить оптимальных результатов.

Подготовленный генератор устанавливается на ветряк, присоединяется к крыльчатке и тестируется на практике.

Инструкция по сбору и установке

После перемотки или установки неодимовых магнитов генератор собирается обычным образом. Гайки на соединительных элементах надежно затягивают, исключая возможность расшатывания собранной конструкции. Провода качественно изолируют, по возможности помещают в гофрированную трубу. Снаружи корпус генератора неплохо защитить корпусом, в качестве которого можно использовать отрезок полипропиленовой трубы с заглушками, в которых проделаны соответствующие отверстия.

Монтаж устройства к ветряку производится согласно выбранной конструкции. Поскольку оптимальным способом является непосредственная установка крыльчатки на вал генератора, следует заранее предусмотреть способ крепления и изоляции от атмосферной влаги. В идеале вращающиеся части должны быть надежно закрыты от доступа внешнего воздуха, что предотвратит появление коррозии, обледенение, появление пылевых наносов.

Оптимальным способом монтажа принято считать фиксацию на опорной штанге при помощи хомутов. Такой вариант не нуждается в использовании крепежных болтов, опасных из-за возможности появления ржавчины и сложностей при ремонте. Проблемы, возникшие с хомутами, решить намного проще – их всегда можно срезать и заменить новыми.

Иногда приходится использовать соединительную муфту. Она устанавливается как переходный элемент с вала ротора ветряка на вал генератора, установленных соосно. Требуется точное соблюдение размеров и прочность крепления муфты, иначе передача вращения прекратится или будет происходить с большими потерями.

Рекомендуемые товары

Ветрогенератор своими руками

Цены на электроэнергию неуклонно растут. Чтобы ваша жизнь была комфортной как жарким летом, так и морозной зимой, следует или потратить немало денег на электроэнергию, или искать альтернативный источник энергии. В развитых странах уже давно используют солнечную энергию, водную и ветровую. Это природный источник питания, за который вам не придется платить. Довольно популярным способом получать энергию является ветряк, использующий ветер для получения электричества – ветрогенератор.

Россия довольно большая страна с равнинными территориями. Несмотря на то что во многих местах преимущественно медленные ветры, есть регионы, сильно обдуваемые мощными потоками воздуха. Так почему бы не использовать в хозяйстве это преимущество? Все что требуется – потратить время и средства, чтобы сделать самодельный ветрогенератор. Ветряк полностью окупит себя всего за несколько месяцев. Мы рассмотрим 2 вида ветрогенераторов, которые можно сделать своими руками.

Ветрогенератор роторного типа

Для начала мы рассмотрим, как сделать несложную конструкцию роторного вертогенератора. С простого начинать легче, и вы поймете принцип работы. Этот тип ветрогенератора подойдет для владельцев небольшого садового домика. Использовать сделанный ветряк для большого коттеджа не получится, ввиду маломощности ветрогенератора.

Но ветряк легко справиться с тем, чтобы вечером обеспечить светом хозяйственные помещения, осветить садовую дорожку крыльцо и т. д. Давайте подробно рассмотрим, как сделать такой ветрогенератор своими руками.

Преимущества и недостатки роторного ветрогенератора

Когда ветрогенератор сделать как надо, он будет функционировать без каких-либо ошибок. С аккумулятором на 75А и с хорошим инвертером на 1000 W, ветряк без проблем будет обеспечивать светом улицу, площадку дома, питать защитную сигнализацию, видеонаблюдение и т. д.

Ветрогенераторы такого типа имеют следующие преимущества:

  • простота монтажа;
  • небольшая себестоимость;
  • экономичность;
  • податливость к ремонту;
  • не привередлив к условиям функционирования;
  • надежность и бесшумность работы.

Минусов ветрогенератора несколько:

  • небольшая производительность ветрогенератора;
  • полная зависимость ветряка от ветра;
  • лопасти может сорвать воздушный поток.

Подготовка материалов для ветрогенератора

Первым делом нужно собрать все расходники и детали для ветряка. Сделанный вами ветрогенератор будет выдавать мощность не более 1,5 КВт. Чтобы сделать агрегат вам нужно иметь:

  1. Автомобильный генератор на 12 В.
  2. Гелиевый или кислотный аккумулятор на 12 В.
  3. Специальный преобразователь с 12 В на 220 В и с 700 Вт на 1500 Вт.
  4. Большую емкость из нержавейки или алюминия: ведро или кастрюля.
  5. Простой вольтметр.
  6. Болты, шайбы и гайки.
  7. Реле зарядки аккумулятора от автомобиля и контрольной лампочки заряда.
  8. Провода с разным сечением (2,5 мми 4 мм2).
  9. Хомуты, фиксирующие ветрогенератор.
  10. Выключатель «кнопка» полугерметичный, на 12 В.

Кроме того, запаситесь такими инструментами:

  • болгаркой или ножницами по металлу;
  • рулеткой;
  • строительным карандашом или маркером;
  • отверткой, дрелью, кусачками и сверлом.

Конструкторские работы ветрогенератора

Работа заключается в изготовлении ротора и переделывания шкива генератора. Этапы следующие:

  1. Подготовьте ведро или кастрюлю.
  2. При помощи рулетки и маркера сделайте разметку, разделив емкость на 4 одинаковые части.
  3. Теперь нужно вырезать лопасти.

Обратите внимание! Работая ножницами по металлу, необходимо вырезать под них отверстие. Если же ведро сделано не из покрашенной жести или оцинковки, то можно использовать болгарку.

  1. Снизу ведра и в шкиве пометьте место, где будут отверстия. В них ввинчиваются болты. Не торопитесь, сделайте все ровно, так как при вращении может возникнуть дисбаланс. После чего сделайте отверстия.
  2. Теперь отогните лопасти. Только не забудьте учесть, в каком направлении крутится генератор.
  3. Угол изгиба лопасти влияет на площадь, которую будет встречать ветер. Это напрямую влияет на скорость и частоту оборотов ветряка.
  4. При помощи болтов, закрепите ведро на шкиве.
  5. Установите свой ветрогенератор на мачту, закрепив его хомутами.
  6. Осталось подсоединить провода и собрать цепь.
  7. На мачте зафиксируйте провода, чтобы они не болтались.

Для подсоединения аккумулятора возьмите провода, сечение которых 4 мм2. Рекомендуемый размер – не больше 1 м. А благодаря проводам с 2,5 мм2 подключите свет и приборы. Не забудьте установить инвертер (преобразователь). Подключите прибор в сеть к контактам №7 и №8, показанным на схеме ниже. Пользуйтесь проводами 4 мм2.

Вот и все, теперь ваш ветрогенератор готов к работе. Не может не радовать то, что он сделанный своими руками.

Ветрогенератор аксиальной конструкции на магнитах

В основе такого ветряка на 220в, лежит ступица от легковой машины, имеющая тормозные диски. Если деталь не новая, разберите ее проверьте и смажьте подшипники, а также счистите ржавчину.

Распределяем и закрепляем магниты

Для начала нужно наклеить магниты на диск ротора. При этом используемые магниты не обычные, а специальные неодимовые магниты. Они значительно мощнее. Потребуется 20 магнитов, размер которых 25 на 8 мм. Магниты размещаются с чередованием полюсов. Для правильного расположения сделайте шаблон, как показано на фото ниже.

Совет! По возможности используйте для ветрогенератора не круглые магниты, а прямоугольные. У них магнитное поле сосредотачивается не в центре, а по длине.

Чтобы закрепить магниты на диске, пользуйтесь силикатным клеем. А для прочности в конце можно залить магниты эпоксидной смолой. Во избежание протекания смолы, сделайте пластилиновые бордюры или обмотайте скотчем диск.

Обратите внимание! Чтобы не перепутать где какой полюс у магнита, можете пометить их «+» или «–». Чтобы определить это – поднесите один магнит к другому. Поверхности магнита, которые притягиваются, имеют «+». Если магнит отталкивается, он имеет полюс «–».

Трехфазный и однофазный генератор для ветрогенератора

Если сравнивать их, то прибор с одной фазой хуже, ведь при нагрузке он вибрирует за счет разницы в амплитуде тока. А она появляется из-за непостоянности тока. В трехфазных изделиях этот эффект отсутствует. Их мощность всегда одинаковая. Все дело в том, что одна фаза компенсирует другую и наоборот, если в одной фазе ток пропадет, то в другой он будет увеличиваться.

Что получается в итоге? А то, что трехфазные генераторы имеют отдачу на 50% больше, чем однофазные. Кроме того, радует и отсутствие вибрации, которая может раздражать и влиять на комфортность. Работая под большой нагрузкой, статор не будет гудеть. Если же вам шум не мешает, и вы решили использовать однофазный генератор, будьте готовыми к тому, что вибрация негативно скажется на работе ветрогенератора. Срок его эксплуатации будет меньшим.

Наматываем катушки

Очень быстроходным ветрогенератор назвать нельзя. Требуется сделать все так, чтобы аккумулятор на 12 В заражался от 100–140 об./мин. С такими первоначальными данными, все количество витков в катушках должно быть равно 1000–1200. Но как узнать, сколько витков приходится на 1 катушку? Все просто: эта цифра делится на количество катушек.

Если вы хотите, чтобы ветрогенератор при низких оборотах выдавал больше мощности, требуется сделать больше полюсов. В таком случае в катушке частота колебания тока увеличится. Чтобы уменьшить сопротивление и увеличить сопротивление тока, рекомендуем наматывать на катушки толстый провод. Учитывайте и то, что при сильном напряжении сопротивление обмотки может «съесть» ток.

Обратите внимание, что число и толщина магнитов, которые закреплены на дисках, определяют рабочие параметры генератора. Чтобы выяснить, какую мощность может выдавать ветрогенератор, намотайте одну катушку и прокрутите генератор. Измеряйте напряжение на некоторых оборотах без нагрузки. К примеру, за 200 об./мин вы получили силу тока в 30 В с сопротивлением в 3 Ом. Отнимите от этих 30 В 12 В (напряжение аккумулятора). Теперь разделите число, которое получились на 3 Ом. Выглядит все так:

30 – 12 = 18;

18 : 3 = 6.

В итоге получилось 6 А. Именно они пойдут в аккумулятор. Понятно, что на практике будет немного меньше из-за потерь в проводах.

Катушки лучше делайте вытянутой формы. Тогда медь в секторе выйдет больше, а витки будут прямыми. Диаметр отверстия внутри катушки должен быть равен размеру магнитов или немного превышать его.

Обратите внимание! Толщина статора должна быть такой же, как и толщина магнитов.

Формой для статора может быть фанера. Но сектора для катушек можно разместить и на бумаге, сделав пластилиновый бордюр. Катушки нужно закрепить так, чтобы они не двигались, а концы фаз выведите наружу. Все провода соедините звездой или треугольником. Осталось протестировать ветрогенератор, вращая его рукой.

Делаем винт и мачту для ветрогенератора

Мачта для верогенератора должна быть высокой, от 8 до 12 м. Основание нужно забетонировать. Крепление лучше сделать такое, чтобы труба легко поднималась и опускалась лебедкой. Сверху на трубу будет крепиться винт ветрогенератора.

Вы можете сделать его из пластиковой трубы Ø160 мм. Из нее вырежьте винт с шестью лопастями, длиною 2 м.

 

Чтобы увести винт от сильного порыва ветра сделайте складывающийся хвост. В результате вся энергия, которую выработает ветрогенератор, сможет накапливаться в аккумуляторе.

Вот и все, вы знаете, как сделать ветрогенератор на магнитах. Теперь вы можете пользоваться электроэнергией, выработанной таким ветрогенератором, экономя свои средства. Все ваши усилия вознаградятся.

Заключение

Из этой статьи вы узнали, как сделать ветрогенератор своими руками, да не один, а двух видов. Именно такие ветрогенераторы любят и используют для загородных домов владельцы. Как видите, каждый ветрогенератор хорош в чем-то своем и сделать его не тяжело.

Если вы живете в районе с сильными ветрами, то увидите, насколько меньшими стали счета за электроэнергию, благодаря ветрогенератору. Такой ветряк в хозяйстве никогда не будет лишним. Дополнительно предлагаем вам посмотреть видео, как сделать такой ветрогенератор.

подробная инструкция по сборке вертикального ветряка

Если раньше ветряки можно было встретить не часто, то сегодня эта сфера активно развивается и опыт по созданию приобрели многие.

Область применения устройств разнообразна: они обеспечивают электричеством дома, качают воду, напрямую к ним подключают сельскохозяйственное оборудование (например, дробилки) и нагревают ёмкости с водой, которые могут стать аккумуляторами тепла для жилища.

Промышленные модели всем хороши, кроме стоимости, поэтому рассмотрим, как сделать ветрогенератор (ветряк) для частного дома своими руками и что для этого потребуется.

Ветряки для дома своими руками, механика ветрогенератора

Суть работы ветрогенератора – превращение кинетической энергии ветра в электрическую. Каждый элемент системы выполняет свою функцию:

  • Ветряное колесо, лопасти. Улавливают движение воздушных масс, вращаются и приводят в движение вал.
  • На валу может быть сразу установлен генератор, а может быть угловой редуктор, который передаст движение вниз на кардан. Благодаря использованию редуктора можно добиться повышения оборотов (мультипликатор).
  • Генератор – преобразует вращательную энергию в электрическую. Если генератор выдаёт стабильный ток, то его цепляют к аккумуляторам. Если нет – промежуточно устанавливается реле-регулятор напряжения.
  • Аккумуляторов в системе может и не быть, но с ними работа более стабильна – они используют ветреные часы для подзарядки и расходуют накопленный потенциал, когда ветер стихает.
  • Инвертор – служит для преобразования напряжения в нужную величину, например, в 220V. Нужен для удобства, поскольку большинство приборов рассчитаны на такое напряжение. Но назначение ветряка может быть различным, поэтому не в каждую схему включают инвертор.
  • Анемоскоп – прибор, который используют для мощных ветроустановок. Он собирает данные о скорости и направлении ветра. В самодельных конструкциях практически не встречается. Обычно делают небольшой флюгер и поворотный механизм.
  • Мачта – или опора, на которой будет закреплён пропеллер. На высоте больше шансов поймать стабильный и сильный ветер, поэтому важно уделить внимание мачте, которая должна выдерживать нагрузки.

Ветряки могут быть горизонтальными (с классическим воздушным винтом) и вертикальными (роторные). Горизонтальные установки имеют наибольший КПД, поэтому их чаще всего воспроизводят при самостоятельном изготовлении.

Генератор вертикального типа

Но такие ветряки нужно поворачивать навстречу ветру, поскольку при боковом потоке он перестаёт работать. А роторный ветрогенератор, сделанный своими руками, тоже имеет свои преимущества.

Конструкция вертикальных систем может сильно отличаться, но есть у них общие особенности.

  • Вертикально расположенные турбины поймают ветер, откуда бы он ни дул (горизонтальные модели нужно оснащать направляющей), что очень удобно, если ветер в конкретной местности не стабильный, переменный.
  • Такую конструкцию можно расположить прямо на земле (конечно, если там будет достаточно ветра).
  • Сделать установку проще, чем горизонтальную.

Единственный минус – относительно невысокий КПД.

Мощность устройства

Во-первых, нужно определить, какой мощности ветряк требуется, с какими задачами и нагрузками он должен справляться.

Обычно альтернативные источники энергии устанавливают, как дополнительный, который только помогает основному энергоснабжению.

И агрегаты мощностью от 500 Вт – это уже неплохо.

Для отопления небольшого дома понадобится около 2-3 кВт.

Но мощность ветряка зависит от 2 факторов:

  1. Диаметра лопастей.
  2. Скорости ветра.

Желаемое соотношение можно определить по таблице для горизонтальных устройств (на пересечении скорости ветра и диаметра лопастей – мощность в ваттах).

Скорость ветра/Диаметр лопастей 3 4 5 6 7 8 9 10 11
3 8 15 27 42 63 90 122 143
13 31 61 107 168 250 357 490 650
30 71 137 236 376 564 804 1102 1467
53 128 245 423 672 1000 1423 1960 2600
83 196 383 662 1050 1570 2233 3063 4076
120 283 551 953 1513 2258 3215 4410 5866
162 384 750 1300 2060 3070 4310 6000 8000
212 502 980 1693 2689 4014 5715 7840 10435
268 653 1240 2140 3403 5080 7230 9923 13207

Например, если чаще всего дуют ветра от 5 до 8 м/с, а нам нужно, чтобы ветряк выдавал 1,5 – 2 кВт, то нужно рассматривать конструкции диаметром от 6 м.

Лопасти

По форме лопасти могут быть:
  1. Крыльчатого вида.
  2. Парусного типа.

Парусные – плоские, это менее продуктивная схема. Они не учитывают аэродинамические силы, а вращаются только под напором ветряного потока.

Только 10 % энергии ветра будет преобразована в электрическую.

У крыльчатого типа наружные и внутренние поверхности различаются по площади. Также важно расположить лопасти под углом 6-10 ° к ветру.

Какой материал использовать на лопасти

На старинных мельницах изготавливался тонкий деревянный каркас из жердей с перемычками, на который натягивались полотняные «крылья». Когда ткань ветшала, её заменяли. Как вариант, можно использовать плотные материалы, такие, как брезент.

Но есть и альтернативы, как можно сделать лопасти для ветрогенератора своими руками:

  • Для небольшого пропеллера можно сделать пластиковые лопасти, разрезав на части трубу ПВХ.
  • «Паруса» вырезают из фанеры.
  • Крупный агрегат можно снабдить лопастями из деревянных досок (не важно, что каждая лопасть будет тяжёлой, главное, чтобы они уравновешивали друг друга).
  • Можно использовать лёгкий металл, например дюралюминий.

Если ветер в местности порывистый, предпочтительнее делать увесистые лопасти, тогда система будет работать более стабильно.

Диаметр используемой трубы должен ровняться пятой части её длины. Отрезок разрезается вдоль на 4 части, в основании вырезается квадрат 5х5 (это будет место крепления), а затем делается косой срез, заужающий лопасть от основания к концу. Рваный край обрабатывается наждаком.

Для тех, кто любит путешествовать, ходить в походы или на рыбалку, такое устройство как электрогенератор на дровах будет просто незаменимым. Что это такое и как изготовить такой генератор своими руками, читайте далее.

Как организовать отопление без газа и дров, читайте тут.

Наверняка, вы слышали, что в военные времена выпускали автомобили, которые ездили на дровах. В чем состоит актуальность газогенератора в наше время, читайте в этой теме: https://microklimat.pro/otopitelnoe-oborudovanie/otopitelnye-pribory/gazogenerator-svoimi-rukami. html. А также вы найдете инструкцию по изготовлению агрегата своими руками.

Вертикальный ветрогенератор своими руками

Используемые материалы и оборудование

Габариты турбины могут быть выбраны произвольно – чем больше, тем мощнее. В примере диаметр изделия – 60 см.

Для изготовления вертикальной турбины понадобится:

  1. Труба Ø 60 см (желательно из нержавеющей стали – оцинковка, дюраль и т.д.).
  2. Прочный пластик (два диска диаметром 60 см).
  3. Уголочки для крепления лопастей (по 6 шт. на каждую) – 36 шт.
  4. Для основы – ступица автомобильная.
  5. Гайки, шайбы винты для крепления.

Оборудование и инструмент:

  1. Лобзик.
  2. Болгарка.
  3. Дрель.
  4. Отвёртка.
  5. Ключи.
  6. Перчатки, маска.

Для балансировки лопастей можно использовать небольшую металлическую пластину, магниты, а при небольшом дисбалансе можно просто просверлить отверстия.

Чертеж ветрогенератора

Чертеж устройства ветрогенератора

Изготовление вертикального ветряка

  1. Металлическая труба разрезается вдоль так, чтобы получилось 6 одинаковых лопастей.
  2. Из пластика вырезается две одинаковых окружности (диаметр 60 см). Это будет верхняя и нижняя опора турбины.
  3. Чтобы немного облегчить конструкцию, можно вырезать в верхней опоре по центру круг Ø 30 см.
  4. В зависимости от того, сколько на автомобильной ступице отверстий, размечаются по ним точно такие же отверстия для крепления в нижней пластиковой опоре. Просверливаются дрелью.
  5. По шаблону нужно разметить расположение лопастей (два треугольника, образующих звезду). Отмечаются места крепления уголков. На двух опорах должно получиться идентично.
  6. Лопасти обрезать лучше не по одной, а все сразу (используется болгарка).
  7. Места креплений уголков нужно отметить и на лопастях. Затем просверлить отверстия.
  8. При помощи уголков лопасти крепятся к кругам-основаниям болтами и гайками через шайбы.

Чем длиннее лопасти, тем мощнее будет агрегат, но тем труднее его будет отбалансировать, в сильный ветер конструкцию «разболтает».

Генератор своими руками

Для ветряка нужно подбирать самовозбуждающийся генератор на постоянных магнитах (такие использовались в тракторах Т-4, МТЗ, т-16, т-25).

Если поставить обычный автомобильный генератор, у них обмотка напряжения работает от аккумулятора, то есть: нет напряжения – нет возбуждения.

Значит, если установить автогенератор + аккумулятор, и долгое время будет слабый ветер, аккумулятор просто разрядится и когда ветер появится вновь, система не запустится.

Либо изготовить ветрогенератор на неодимовых магнитах своими руками. Выдавать такой агрегат будет при слабом ветре 1,5 кВт, максимально, при сильном ветре 3,5 кВт. Инструкция по шагам:

Делаются два металлических блина, диаметром по 50 см.

На них по периметру на супер-клей крепятся по 12 неодимовых магнитов на каждой (размером примерно 50 х 25 х 1,2 мм). Магниты чередуются: «север» – «юг».

Блины размещаются друг напротив друга, полюса тоже ориентируются «север» – «юг».

Между ними размещается самодельный статор. Это 9 катушек медной проволоки сечением 3 мм. По 70 витков в каждой. Между собой они соединяются по схеме «звезда» и заливаются полимерной смолой. Катушки наматываются в одну сторону. Для удобства начало и конец обмотки нужно пометить (например, изолентой разных цветов).

Самодельный генератор для ветряка из неодимовых магнитов

Толщина статора около 15 – 20 мм. При его изготовлении нужно предусмотреть выходы обмоток с катушек через болты с гайками. С них будет идти питание генератора.

Расстояние между статором и ротором – 2 мм.

Суть работы в том, что север и юг магнитов меняются местами, что заставляет электрический ток «бегать» через катушку.

Магниты роторов будут очень сильно притягиваться. Чтобы соединить детали плавно, нужно просверлить в них отверстия и нарезать резьбу для шпилек. Роторы сразу выравниваются относительно друг друга и, постепенно, при помощи ключей, опускается верхний на нижний. После всего временные шпильки убираются.

Этот генератор можно использовать как на вертикальную, так и на горизонтальную модель.

Процесс сборки

  • На мачте устанавливается кронштейн для крепления статора (он может быть трёх или шести лопастной).
  • Над ним закрепляется гайками ступица.
  • В ступице 4 шпильки. На них закручивается генератор.
  • Статор генератора соединяется с кронштейном, неподвижно закреплённым на мачте.
  • На вторую пластину ротора закрепляется лопастная турбина.
  • От статора провода клеммами подключаются на регулятор напряжения.

Монтаж установки, которая превратит ветер в энергию

Чтобы установить собранную конструкцию на длинной мачте (а она будет довольно тяжёлой), нужно сделать следующее:

  1. В земле бетонируется надёжное основание.
  2. Во время заливки, в него вливают шпильки для крепления мощного шарнира (легко делается своими руками).
  3. После полного затвердевания, шарнир одевается на шпильки и закрепляется гайками.
  4. Мачта крепится к подвижной половине шарнира.
  5. В верхней части мачты при помощи фланца (приваривается), крепятся три – четыре растяжки. Понадобится стальной трос.
  6. За один из тросов мачта на шарнире поднимается (можно тянуть автомобилем).
  7. Растяжки фиксируют строго вертикальное положение мачты.

Ветряк из тракторного генератора

Место установки

От правильно подобранного места расположения ветряка будет зависеть эффективность его работы. Нужно найти место, где лопастям будет доступно максимальное количество ветра.

Это должно быть открытое пространство, возвышенность или крыша строения – подальше от деревьев и домов. И дело не только в помехах, но и в том, что устройство производит во время работы некоторый шум, а значит, может мешать спокойной жизни соседей.

Иногда на некотором удалении от жилого дома строят небольшой домик, в котором можно разместить оборудование и аккумуляторы, а на его крыше закрепляют ветрогенератор, можно даже в паре с солнечными батареями.

Сейчас все больше людей проявляют интерес к альтернативным источникам энергии. И частный дом – отличное поле для экспериментов. Альтернативная энергия своими руками: использование ветра, геотермальной энергии, биогаз и другие варианты, их плюсы и минусы.

Как утеплить трубы в земле своими руками, читайте в этой рубрике.

Видео на тему

Удивительные ветрогенераторы - Энергетика и промышленность России - № 21 (353) ноябрь 2018 года - WWW.EPRUSSIA.RU

Газета "Энергетика и промышленность России" | № 21 (353) ноябрь 2018 года

Объединяет их лишь одно: рабочей силой является движение воздушных масс. О некоторых оригинальных агрегатах мы и хотим рассказать в этом материале.

Ветрогенераторы становятся все более популярными. Их используют не только как дополнительный источник электричества, но зачастую и как основной, например, при обустройстве загородного дома. Тому способствует удобство эксплуатации и вполне хороший эстетичный вид ветряков. К тому же это вполне экологичные конструкции, не требующие затрат на природные ресурсы: ветер бесплатен. К тому же нынче промышленность выпускает контроллеры энергии, обеспечивающие работу даже при слабом ветре, собирающие энергию «порциями», и конструкции с автоматически изменяющимся углом атаки лопастей в зависимости от направления и силы ветра.

В настоящее время различают три основных типа конструкции ВЭС: пропеллерные, где вращающийся вал расположен горизонтально относительно направления ветра и с самым высоким КПД, барабанные и карусельные, в которых вал, вращающий лопасти, расположен вертикально и которые монтируется в местах, где направление ветра не имеет большого значения (например, в горах).

Главная проблема – нерегулярность работы поставщика энергии, то есть самого ветра. Ветряные электростанции напрямую зависят от этого фактора, и работа узлов, получающих электроэнергию подобным способом, не может быть непрерывной. Положение усугубляется еще и тем, что сила ветра может служить как на пользу, так и во вред – нарастание силы ветра способно вывести установки из строя.

Достоинства ВЭС – простота конструкции, экономичность и возобновляемость источника энергии. Кроме того – доступность (ветер дует везде) и независимость источника энергии (например, от цен на топливо).

Недостатки – зависимость от ветра, шумность и необходимость использования больших площадей (в случае постройки крупных электростанций). Кроме того, стартовая стоимость и дальнейшее использование – вполне затратны (необходимы накопители энергии, которые имеют ограниченный срок эксплуатации).

Как и среди производителей, лидер по строительству ВЭС – Германия. Европа вообще переживает бум строительства ветроустановок, их число растет в скандинавских странах и Греции.

В Азии наибольший практический интерес испытывается со стороны Китая. Программа строительства предусматривает обязательный монтаж таких установок при возведении новых зданий.

Это касается, в первую очередь, так называемых «традиционных» ветряков. Но среди всего разнообразия установок есть и оригинальные, не вписывающиеся в обычные представления о них.

Дерево-ветрогенератор

Например, французская группа инженеров создала искусственное дерево, способное генерировать электричество с помощью ветра. Устройство производит энергию даже при небольшом движении воздуха.

Идея пришла автору изобретения Жерому Мишо-Ларивьеру, когда он наблюдал шелест листьев в безветренную погоду. Устройство использует небольшие пластины в форме скрученных листьев, которые преобразуют ветряную энергию в электрическую. Причем независимо от направления движения воздуха. Дополнительное преимущество «дерева» заключается в его полностью бесшумной работе.

На создание 8‑метрового прототипа инженеры потратили три года. Энергогенерирующее «дерево» установлено в коммуне Плюмер-Боду на северо-западе Франции.

Новая установка, Wind Tree, эффективнее обычного ветрогенератора, поскольку вырабатывает энергию даже при скорости ветра всего 4 м / с.

Мишо-Ларивьер надеется, что «дерево» будет использовано для питания уличных фонарей или зарядных станций для электромобилей. В будущем он планирует усовершенствовать установку и подключить ее к энергоэффективным домам. Идеальное электрогенерирующее «дерево», по словам изобретателя, должно иметь листья из натуральных волокон, «корни» в виде геотермального генератора и «кору» с фотоэлементами.

Биоразлагаемые лопасти

Ахиллесова пята быстрорастущей индустрии ветроэнергетики – физические компоненты ветрогенераторов, которые изготавливаются из нефтяных смол и в конечном итоге оказываются на свалках.

Чем больше ветрогенераторов, тем больше выбрасывается использованных лопастей. Чтобы положить конец этой расточительности, исследовательской группе UMass Lowell был выделен грант для решения этой проблемы путем создания биоразлагаемых лопастей.

Для конструирования новых ветрогенераторов они планируют использовать «полимеры на биологической основе», примером которых является растительное масло.

Кроме всего прочего, рассматривается возможность замены нефтяных смол устойчивыми. Ученые надеются найти новый материал, который обладает теми же свойствами, что и ныне используемый.

Одна из трудностей состоит в том, что необходимо проверить, могут ли эти экологичные лопасти выдерживать суровые погодные условия и при этом иметь конкурентоспособные цены.

Использование биоразлагаемых лопастей сделает индустрию еще более «зеленой» за счет сокращения отходов.

Крылья стрекозы

Несколько исследователей из Франции попробовали сделать ветряную турбину еще эффективней за счет изменения ее компонентов. Насекомые, а именно стрекозы, вдохновили их на создание гибких лопастей. Ветровая турбина на сегодняшний день работает только при оптимальных скоростях ветров, но новый био-дизайн может дать способ обойти этот факт.

Исследователи построили прототипы с обычными жесткими лопастями, умеренно гибкими лопастями и очень гибкими лопастями турбины. Последний дизайн оказался слишком гибким, но умеренно гибкие лопасти превосходят жесткие, создавая на целых 35 % больше мощности. Кроме того, они продолжали работать в условиях слабого ветра и не были подвержены повреждениям при сильном ветре.

Теперь ученым предстоит найти оптимальный материал, который не был бы слишком гибким, но и не являлся жестким.

Воздушная ветроэнергетика

Воздушная ветроэнергетика (Airborne Wind Energy, сокращенно AWE) запускает в небеса летающие ветряные электростанции – дирижабли, «воздушные змеи», дроны и прочие летательные аппараты, оснащенные ветряными турбинами или приводящие в действие наземные генераторы с помощью своих «поводков».

Летающие ветрогенераторы не требуют фундаментов и значительных транспортных издержек. При этом они работают с хорошим «коммерческим» ветром – на высотах в несколько сотен метров ветер стабильнее и сильнее. Поэтому коэффициент использования установленной мощности воздушных ветряных электростанций достигает 70 %.

Например, это шотландский ветроэнергетический проект Kite Power Systems, технологии которого обеспечивают выработку энергии с помощью «воздушных змеев», парящих на высоте до 450 м.

А ветроэнергетическая система Airborne Wind Energy System использует для добычи энергии следующую схему. Автономный самолет, привязанный к основанию, летает по восьмерке на высоте от 200 до 450 метров. Когда самолет движется, он тянет тросик, который приводит в действие генератор. Как только трос намотан до установленной длины (~750 м), самолет автоматически опускается на более низкую высоту. Затем он поднимается и повторяет процесс. Самолет взлетает с платформы, летает и приземляется автономно, используя набор сенсоров, которые обеспечивают информацию для безопасного выполнения задачи.

Ветрогенератор закрытого типа

Компания «Оптифлейм Солюшенз», реализующая в рамках «Сколково» проект по созданию нового поколения малых и средних ветрогенераторов закрытого типа, создала предсерийный образец ветроустановки для подготовки к промышленному производству.

Традиционные ветрогенераторы открытого типа обладают высоким уровнем потенциальной опасности и поэтому располагаются преимущественно в нежилых зонах на удалении. Ветрогенераторы закрытого типа, оснащенные турбиной наподобие самолетной, можно размещать в любых местах, например на крышах жилых или коммерческих зданий.

Установочная мощность образца – 1 / 2 кВт. Он протестирован в аэродинамической трубе и в реальных условиях. В дальнейшем планируется создать и более мощные разработки.

Вместо обычного двух- или трехлопастного вентилятора здесь используется осевая турбина самолетного типа. Это повышает КПД и снижает стоимость изготовления, т. к. сами лопатки существенно меньше вентиляторных. Конструкция имеет внешний направляющий аппарат, который дополнительно повышает КПД и служит защитой от птиц, а также имеются внешний и внутренний обтекатели, служащие защитой в случае разрушения лопаток.

В итоге получен ветрогенератор с рекордно низкой стоимостью генерации кВт-часа, который принципиально возможно размещать в жилой зоне, в том числе – на крышах городских домов. Обычный ветряк там ставить невозможно, так как в пределах десяти диаметров от него должно быть свободное пространство.

По сравнению с обычными ветрогенераторами данная конструкция безопасна в рабочем состоянии для обслуживающего персонала и летающих животных. Также оно работает при более низком уровне шума и не является значительной угрозой для безопасности людей и строений в округе. При аварии обычного ветрогенератора массивные лопасти, двигающиеся с большой скоростью, как правило, разрушают всю конструкцию при повреждении одной из них.

Безредукторный ветроагрегат

В проекте безредукторного ветроагрегата энергия вырабатывается «кончиками» лопастей. Здесь отсутствует традиционный вал от пропеллера к генератору, а электричество снимается с обода пропеллера.

Его ротор в форме ферромагнитного обода закреплен на крыльях ветроколеса. По конструкции он прост, легко изготавливается и монтируется. Но размещение постоянных магнитов на концах крыльчатки намного утяжеляет ее, что снижает общий КПД установки. Зато агрегат удобен в эксплуатации, потому что простая конструкция не требует излишнего внимания. Такие ветрогенераторы могут работать везде при любых климатических условиях.

«Водонапорная башня»

Самый фантастический проект представили американцы. С дальнего расстояния этот ветрогенератор похож, скорее, на водонапорную башню. Лишь поблизости можно увидеть медленное вращение лопастей.

Такую гигантскую турбину собирается серийно выпускать компания в Аризоне под руководством инженера Мазура. По его расчетам, она одна должна поставлять столько электроэнергии, что ее хватит для мегаполиса в 750 тысяч домов. В 2007 году инженер поставил себе цель – многократно увеличить КПД ветрогенератора на вертикальной оси и приближался к своей цели все эти годы.

Изобретатель работал в двух направлениях: первое – сделать как можно больший захват лопастями воздушного потока и второе – свести к нулю трение опоры ветролопастей. Огромных размеров вертикальный ротор должен выполнить первую задачу, а вращающаяся турбина на магнитной подушке – вторую.

О второй задаче надо сказать более подробно. Вращение без трения достигается за счет магнитной левитации. Весь вертикальный роторный блок при вращении поднимается на своей оси и совершенно не касается нижнего опорного подшипника. Он установлен только для старта, для разгона турбины. Как только она набирает обороты, становится как бы невесомой и отрывается от подшипника. В результате трение сводится к нулю, если не считать трения самой турбины о воздух.

Гигантская турбина очень чувствительна и реагирует на малейшее дуновение ветерка. Такая способность подниматься во время вращения за счет магнитной левитации давно занимала ученые и изобретательские умы планеты. Это такое явление, при котором любая вещь или предмет, имея вес, отрывается от поверхности и парит в пространстве без всякого применения отталкивающей силы.

В проекте Мазура виден «плавающий» ротор на магнитной подушке, а вместо генератора установлен линейный синхронный двигатель. Ветрогенератор на магнитной подушке множеством лопастей максимально захватывает воздушный поток. По предположению, такая турбина будет вырабатывать электроэнергию по сказочно мизерной цене.

Это, конечно, лишь часть необычных для традиционного взгляда проектов. Некоторые из них, например, относящиеся к воздушной ветроэнергетике, уже успешно используются. Некоторым – еще предстоит найти свое место в истории. Понятно одно – на традиционных ветряках ветроэнергетика вовсе не заканчивается, она, как и любое направление техники, неуклонно продолжает развиваться.

Отличный пример работы ветряного генератора: ветрогенератор своими руками

Эта модель ветряного генератора – отличное наглядное пособие для демонстрации работы ветряных двигателей. Модель простая, легко монтируется и служит отличной тренировкой перед сборкой более масштабной турбины.

В школе такую модель мини ветрогенератора можно использовать для демонстрации преобразования энергии. В этой модели раскрыты механическая энергия, энергия ветра и света.

Также этот самодельный ветрогенератор красиво смотрится из-за света диодов.

Шаг 1: Материалы

Маркировочная ручка, двигатель, красный диод, деревянная или пластиковая пластина, Т-образный тройник для ПВХ труб 1.9х1.3х1.3 см (3/4х1/2х1/2 дюйма), разборная муфта 1,3 см (1/2 дюйма), термоклей, дрель со сверлами, лопасти, 1,3 см (1/2 дюйма) фланец, ножницы для ПВХ труб, кернер, уплотнительное кольцо, рулетка, 30,5 см кусок ПВХ трубы 1,35 см (полудюймовая труба), ну, и ветер.

На самом деле, схема ветрогенератора легкая в изготовлении своими руками. Мотор можно вытащить из старого видеомагнитофона или DVD-плеера. Крыльчатку можно сделать из ложек и крышки от пластиковой бутылки. Если нет ножниц для ПВХ труб, можно взять обычную ножовку.

Шаг 2: Сборка

Отмерьте на ПВХ трубе участки 2,5 см и 13 см, сделайте отметки.
Отрежьте куски трубы по меткам.
У вас должны получиться три отрезка трубы – 2,5 см, 12,7 см и 15,2 см.

Шаг 3: Этап 2

  1. Наденьте уплотнительное кольцо на вал двигателя.
  2. Приложите двигатель к верхней перекладине ПВХ тройника.
  3. Держа двигатель так, чтобы уплотнительное кольцо было сразу за краем тройника, отметьте на тройнике конец мотора.
  4. В этом месте будем сверлить отверстие.

Шаг 4: Этап 3

Убедитесь, что отметка находится строго по центру перекладины тройника.
Кернером сделайте углубление в отмеченном месте.
В этом углублении сверло не будет сбиваться.
Просверлите отверстие такого диаметра, чтобы в него проходил диод.

Шаг 5: Этап 4

Возьмите красный диод и двигатель.
Длинная ножка диода – плюс, короткая ножка – минус.
Длинную ножку диод прикрепите к плюсовому контакту двигателя.
Короткую ножку соедините с отрицательным контактом двигателя.
Для соединения с проводами в пластинах контактов сделаны крохотные отверстия, вот в них и закрепите ножки диода.
Чтобы закрепить соединение, согните пластины контактов или ножки диода.

Шаг 6: Проверка

Наденьте крыльчатку на вал двигателя и сильно подуйте на нее.
Диод загорелся?
Если да, то приступайте к следующему шагу.
Если нет, подуйте посильнее. Попробуйте поменять полярность диода.

Шаг 7: Этап 5

Осторожно, под углом, вставьте двигатель с диодом в широкий конец тройника.
Когда диод покажется в отверстии, выровняйте двигатель, чтобы диод вышел в отверстие.

Шаг 8: Этап 6

Удерживая двигатель на месте, добавьте по кругу термоклей.

Шаг 9: Этап 7

Отложите тройник с двигателем в сторону, пока клей высохнет.
Возьмите разборную муфту и разъедините ее на части.
Уберите уплотнительное кольцо.
Это сделает вращение ветряка легче.

Шаг 10: Этап 8

Вставьте отрезок трубы 2,5 см в верхнюю часть муфты. На фото показано, какая именно часть верхняя.
Нажмите на отрезок трубы, чтобы он плотно сел в фитинге.

Шаг 11: Этап 9

Другой конец трубы вставьте в тройник с пропеллером в нижнее отверстие.
Аккуратно надавите, чтобы труба плотно села в отверстии тройника.

Шаг 12: Этап 10

В свободное отверстие тройника вставьте отрезок трубы 15,2 см.
В нижнее отверстие разборной муфты вставьте кусок трубы 12,7 см, аккуратно нажмите, чтобы трубы плотно сели в фитингах.

Шаг 13: Заключение

На конец 15 см трубы нанесите термоклей.
На клей положите кусок пластика и прижмите его.
Дайте клею высохнуть.

Шаг 14: Наслаждайтесь!

По желанию можно затянуть или ослабить разборную муфту.
Если хотите, все детали можно склеить.
Для законченного вида турбину можно покрыть краской.

Как сделать ветряк для школьного проекта?

Ветряная турбина полностью полагается на энергию ветра для производства электроэнергии. Это делает его экологически безопасным методом производства энергии. И отличный выбор для вашего школьного проекта.

В следующем посте мы познакомим вас с простым для понимания пошаговым руководством по созданию рабочей модели ветряной мельницы для вашего школьного проекта.

Вещи, которые вам понадобятся:

  • Двигатель постоянного тока
  • Большой кусок картона
  • Фанерная плита
  • Низкоомный светодиодный светильник
  • Ножницы
  • Положительный и отрицательный провода
  • Пистолет для горячего клея
  • Лента , и
  • Внешний источник ветра

Действия, которые необходимо выполнить:

Шаг № 1: Сборка ротора

Возьмите большой кусок картона и вырежьте 4 круглых части диаметром около 3 см каждая.Склейте все кружочки с помощью клея, чтобы получился один толстый кружок.

Теперь возьмите тонкую бумагу и оберните (приклейте) ее вокруг толстого круга, который вы получили выше, убедившись, что он правильно соответствует кругу по длине и ширине.

Шаг № 2: Изготовление лезвий

Вырежьте до 4 прямоугольных частей из большого картона, каждый размером 8 см X 2,5 см. Вырежьте один край кусочков так, чтобы они образовали круглую форму, чтобы вы могли легко приклеить их к ротору, который вы только что сделали.

Вам также нужно будет слегка согнуть все 4 части по центру, чтобы они выглядели несколько закругленными, как лопасти в типичном комплекте домашней ветряной турбины.

Приклейте все 4 лопасти к ротору и дайте им высохнуть.

Шаг № 3: Построение мачты

Поскольку лопастям требуется время для высыхания, вы можете сконцентрироваться на изготовлении мачты, которая поднимет ротор вверх.

Вернитесь к большому куску картона и вырежьте из него тонкий кусок размером 30 см x 12 см.

Оберните этот вырез вокруг ручки, чтобы получился идеальный полый стержень. Приклейте конец бумаги и вытащите ручку так, чтобы осталась башня.

Шаг № 4: Установка двигателя

Возьмите двигатель постоянного тока и оберните его куском картонной бумаги, соответствующей его длине. При этом следите, чтобы заостренная часть мотора оставалась за пределами пленки.

Возьмите ротор с 4 лопастями и проделайте в его середине небольшое отверстие. Здесь острая часть двигателя соединяется с ротором.

Подключите положительный и отрицательный провода к двигателю с помощью горячего пистолета, убедившись, что вы оставили достаточную длину провода для соединения со светодиодной лампой на других концах.

Приклейте оберточную бумагу двигателя к полюсу и дайте ей высохнуть.

Шаг № 5: Строительство дома

Вам также нужно будет сделать модель дома, которая будет освещаться за счет энергии, вырабатываемой вашей ветряной турбиной.

Для этого отрежьте 4 части одинакового размера, чтобы получились 4 стены вашего дома.Вырежьте дверной проем на одну часть и прорежьте оконные проемы на трех оставшихся частях.

Склейте все 4 части вместе, чтобы получился дом, следя за тем, чтобы деталь с дверным вырезом оставалась спереди.

Имейте в виду, что вам также нужно будет отрезать еще один кусок, чтобы сделать крышу для вашего дома… но не делайте этого сейчас.

Шаг №6: Подключение фонаря

На этом этапе вам нужно взять светодиодный фонарь и подключить его к проводам, идущим от двигателя (как на этапе №4). Прикрепите этот светильник к любому из окон вашего дома и закрепите его лентой.

Как только свет будет хорошо подключен и внутри дома, вы можете сделать кровлю для своего дома. Возьмите две части вагона и приклейте их по краям, чтобы получилась треугольная форма крыши, а затем приклейте кровлю к 4 стенам вашего дома.

Приклейте весь дом к толстому слою картона (например, к полу дома), чтобы он выглядел более устойчивым.

Теперь приклейте весь дом и башню, на которой крепится турбина, к фанерной доске так, чтобы весь ваш проект находился на одной платформе.

Затем соедините вместе провода двигателя и светодиода.

Шаг № 5: Заставьте турбину вращаться

Теперь, когда все настроено и готово к работе, пришло время заставить турбину вращаться для выработки электроэнергии и зажечь лампочку, висящую на вашем окне.

Используйте внешний источник ветра, предпочтительно настольный вентилятор, чтобы лопасти турбины вращались. Затем они будут вращать двигатель, который, в свою очередь, вырабатывает электрическую энергию, которая затем течет по проводам и зажигает вашу светодиодную лампочку!

Вот и все! Вы успешно сконструировали простую рабочую домашнюю турбину для своего школьного проекта. Материалы, используемые в этом проекте, легко доступны и дешевы.

Ваша турбина уже начала освещать ваш «дом»?

Как работает ветряная турбина?

Что такое ветряная турбина?

Ветряная турбина - это самая современная версия ветряной мельницы. Проще говоря, он использует силу ветра для производства электричества. Наиболее заметны большие ветряные турбины, но вы также можете купить небольшую ветряную турбину для индивидуального использования, например, для обеспечения энергией каравана или лодки.

Что такое ветряная электростанция?

Ветряная электростанция - это группа ветряных турбин. Довольно впечатляет мысль о том, что электричество, которое так сильно влияет на нашу жизнь - от зарядки наших телефонов до того, чтобы мы могли приготовить чашку кофе и, все чаще, заправлять наши автомобили - могло начаться с простого порыва ветра. .

Как работает ветряная турбина?

Сначала давайте начнем с видимых частей ветряной электростанции, которые мы все привыкли видеть - этих высоких белых или бледно-серых турбин. Каждая из этих турбин состоит из набора лопаток, коробки рядом с ними, называемой гондолой, и вала. Ветер - а это может быть просто легкий ветерок - заставляет лопасти вращаться, создавая кинетическую энергию. Вращающиеся таким образом лопасти также заставляют вращаться вал в гондоле, а генератор в гондоле преобразует эту кинетическую энергию в электрическую.

Что будет дальше с электричеством, вырабатываемым ветряной турбиной?

Для подключения к национальной сети электрическая энергия затем пропускается через трансформатор на объекте, который увеличивает напряжение до уровня, используемого в национальной электроэнергетической системе.Именно на этом этапе электричество обычно направляется в передающую сеть National Grid, готовую к передаче, чтобы в конечном итоге ее можно было использовать в домах и на предприятиях. В качестве альтернативы, ветряная электростанция или отдельная ветряная турбина могут вырабатывать электроэнергию, которая используется частным образом отдельным лицом или небольшой группой домов или предприятий.


Почему ветряки обычно белые или бледно-серые?

Ветряные турбины обычно бывают белыми или очень бледно-серыми - идея состоит в том, чтобы сделать их визуально ненавязчивыми, насколько это возможно.Существует дискуссия о том, следует ли их перекрашивать в другие цвета, особенно в зеленый, в некоторых условиях, чтобы они лучше гармонировали с окружающей средой.

Насколько сильным должен быть ветер для работы ветряной турбины?

Ветровые турбины могут работать при любых скоростях ветра - от очень слабого до очень сильного. Они генерируют около 80% времени, но не всегда на полную мощность. При очень сильном ветре они отключаются, чтобы предотвратить повреждение.

Где расположены ветряные электростанции?

Ветряные электростанции, как правило, располагаются в самых ветреных местах, чтобы максимально использовать энергию, которую они могут производить - вот почему вы с большей вероятностью увидите их на склонах холмов или на побережье.Ветряные электростанции, расположенные в море, называются оффшорными ветряными электростанциями, а расположенные на суше - наземными ветряными фермами.

Где была первая ветряная турбина и первая ветряная электростанция?

Самая первая ветряная турбина, вырабатывающая электричество, была создана профессором Джеймсом Блайтом в своем загородном доме в Шотландии в 1887 году. Она была 10-метровой высоты и имела парусину.

Первая в мире ветряная электростанция открылась в Нью-Гэмпшире в США в 1980 году.

Вредны ли ветряные электростанции для птиц?

Дело в том, что изменение климата представляет собой самую серьезную долгосрочную угрозу для птиц и других диких животных.А возобновляемые источники энергии, ключевым компонентом которых являются ветряные турбины, необходимы для сокращения парниковых газов .

Королевское общество защиты птиц Великобритании ( RSPB ) признает эту более широкую картину, заявляя: «Переход на возобновляемые источники энергии сейчас, а не через 10 или 20 лет, необходим, если мы хотим стабилизировать выбросы парниковых газов в атмосфера на безопасном уровне ».

Разработчики ветряных электростанций работают в тесном сотрудничестве с RSPB и местными экологическими группами посредством процесса консультаций по выбору ветровых электростанций, чтобы продолжить рост наземной и морской ветроэнергетики, при этом балансируя любой потенциальный вред птицам из-за потери среды обитания, нарушения и столкновения. .

A В отчете США сделан вывод о том, что влияние энергии ветра на популяции птиц относительно невелико по сравнению с падением добычи кошек и столкновениями с высотными зданиями.

Сколько энергии в Великобритании вырабатывается ветром?

Узнайте, сколько энергии в Великобритании вырабатывается ветром, с помощью приложения National Grid ESO для Google Play или Apple iOS .

Ветроэнергетика на крыше может взлетать, используя ключевой принцип полета

Эта статья первоначально была опубликована в журнале Scientific American и переиздана здесь как часть проекта «Покрытие климата сейчас», глобального журналистского сотрудничества, направленного на усиление освещения истории о климате.

Солнечные панели, расположенные на крышах домов и других зданий, становятся все более распространенным явлением в Соединенных Штатах, но ветряные системы на крышах никогда не прижились. Прошлые попытки уменьшить количество высоких турбин, генерирующих энергию ветра, до чего-то, что могло бы находиться в доме, сопровождались слишком многими техническими проблемами, чтобы сделать такие устройства практичными. Однако теперь новая конструкция может обойти эти проблемы, используя тот же принцип, который создает подъемную силу для крыльев самолета.

В целом за последние годы в США выросло производство электроэнергии из возобновляемых источников, и ветроэнергетика была основным двигателем этой тенденции. На его долю приходится более 40 процентов электроэнергии из возобновляемых источников в США (хотя только 7 процентов от всего производства электроэнергии).

В отличие от солнечных батарей, которые ограничены сбором энергии в светлое время суток, ветряные турбины могут работать всю ночь в любом месте с подходящими условиями, а именно на открытых равнинах или пологих холмах с постоянно достаточной скоростью ветра.Но помимо этих требований, для больших турбин требуется открытое пространство, которое не всегда доступно вблизи больших и больших городов. Установка ветряных систем на крышах домов и городских зданий может помочь использовать больше этого ресурса.

Когда дело доходит до энергии ветра, размер имеет значение. Количество энергии, которое может генерировать отдельная турбина, пропорционально области движения ее лопастей, поэтому устройства, которые достаточно малы, чтобы поместиться на крыше, менее мощны.

«От успеха распределенного ветра мешает то, что большинство систем представляют собой миниатюрные ветряные турбины», - говорит Брент Хоученс, инженер-механик из Sandia National Laboratories.

Устройства меньшего размера не производят достаточно энергии, чтобы быть рентабельными. Кроме того, их быстро вращающиеся лезвия создают шумную вибрацию, а их многие движущиеся части более склонны к поломке. По сравнению с пассивными солнечными панелями на крыше ветряные турбины могут потребовать довольно больших затрат на техническое обслуживание.

Хоученс и его коллеги думают, что они разработали решение, которое преодолевает эти препятствия, заимствуя фундаментальный принцип полета по воздуху. Изогнутая форма крыла самолета, называемая аэродинамическим профилем, изменяет давление воздуха по обе стороны от него и в конечном итоге создает подъемную силу.

Коллега

Хоученса Карстен Вестергаард, президент Westergaard Solutions и инженер-механик из Техасского технологического университета, говорит, что он соединил два аэродинамических профиля вместе, так что «поток от одного профиля усиливает другой профиль, и они становятся более мощными». Направленные как два крыла самолета, стоящие вертикально на боку, пара аэродинамических профилей обращена прямо к ветру. По мере прохождения ветра между пленками создается низкое давление, которое всасывает воздух через прорези в их частично полых телах.Это движение воздуха вращает небольшую турбину, заключенную в трубку, и вырабатывает электричество.

Устройство, которое исследователи назвали AeroMINE, может отбирать энергию ветра с большей площади, чем лопасти турбины сами по себе.

Благодаря такой конструкции устройство, которое исследователи называют AeroMINE («MINE» означает «Неподвижная, интегрированная экстракция»), может извлекать энергию ветра из большей площади (по сути, прямоугольной поверхности AeroMINE), чем лопасти турбины могли бы сами по себе. в традиционной установке.Хушенс сравнивает такие стандартные турбины с формочками для печенья, которые оставляют потраченное впустую тесто. Новое устройство использует весь доступный ветер, позволяя извлекать больше энергии.

AeroMINE также не создают таких же вибраций и шума, как обычные турбины; По словам Вестергаарда, они «менее шумны, чем вентиляторы». Относительная простота их конструкции означает, что меньше движущихся частей выходит из строя. К турбине, которая находится внутри здания, будет легче получить доступ, если она действительно нуждается в ремонте.Такое расположение также защищает лезвия от любого контакта с людьми или дикими животными. Команда разрабатывает систему так, чтобы ее можно было использовать вместе с солнечными панелями на крыше, подключаясь к существующей инфраструктуре для сбора энергии, которую они генерируют.

«Я думаю, что эта технология может стать новаторской» для районов с хорошими ветровыми условиями, - говорит Лучано Кастильо, инженер-механик из Университета Пердью, который не участвует в проекте, но в прошлом работал с Вестергардом.

Он также считает, что простота AeroMINE может сделать их хорошим вариантом для развивающихся стран, поскольку новые устройства не требуют специальных деталей или инструментов и их относительно легко исправить. И Кастильо, и Вестергард видят потенциал использования этой конструкции под водой, чтобы использовать приливную энергию.

Джей Апт, содиректор Центра электроэнергетики Карнеги-Меллона, который также не участвует в проекте, согласен с тем, что простота конструкции привлекательна.Но он не уверен, можно ли масштабировать систему для эффективного производства энергии с достаточно низкими затратами в реальных условиях. Хушенс говорит, что при подходящих ветровых условиях он и его коллеги думают, что AeroMINE могут быть конкурентоспособными с нынешней стоимостью солнечной энергии на крышах.

Команда, получившая финансирование от Sandia и Министерства энергетики, протестировала уменьшенные модели в аэродинамических трубах для точной настройки конструкции. В июне исследователи планируют испытать версию устройства высотой 13,1 фута на одноэтажном макете здания на предприятии Scaled Wind Farm Technology (SWiFT), входящем в Национальный институт ветра Техасского технологического института.

Ветряные мельницы на заднем дворе? Журнал STANFORD

Q: Почему мы не можем установить ветряные мельницы на заднем дворе и улавливать энергию индивидуально для нашего личного использования? Есть ли ограничение на то, как его хранить и подавать в мои электрические схемы, что ли? Это дорого обходится моим соседям, или это звуковое загрязнение, или домашняя система просто еще не разработана?

Спросила Мария Шмидт, '79, Форт-Уэрт, Техас


The U.S. Министерство энергетики (DOE) предлагает контрольный список, чтобы убедиться, что небольшие ветровые проекты являются правильным выбором для индивидуальных домовладельцев: Достаточно ли ветра? У тебя достаточно места? Разрешены ли в вашем районе башни? И наконец, сколько энергии вы можете произвести?

Просматривая контрольный список, быстро становится очевидным, почему у всех нас нет ветряных мельниц на заднем дворе, даже несмотря на то, что технология коммерчески доступна. (Вы можете купить ветряные мельницы высотой до девяти футов с лопастями шириной шесть футов, хотя большинство из них имеют размер более 60 футов в высоту с диаметром лопастей 23 фута.) Одна из новых турбин, вызывающих ажиотаж в ветровом сообществе, - это Skystream 3.7, которую хвалят за ее размер (10-футовые лопасти), эффективность при низких скоростях ветра (они могут хорошо работать при средней годовой скорости ветра выше 12 миль в час) и относительно низкая цена (15000 долларов).

Ветровые ресурсы

Для успешной работы домашнего ветра средняя скорость ветра в вашем районе должна составлять не менее девяти миль в час. Министерство энергетики составляет карту ветровых ресурсов США.Как показано на карте, места с наибольшими ветровыми ресурсами обычно находятся на Великих равнинах, вдоль горных вершин и на побережье. Инфографика: Национальная лаборатория возобновляемых источников энергии Министерства энергетики США

Однако карта ветровых ресурсов показывает скорость ветра в высота 50 метров в воздухе - это более 160 футов или 16 этажей! А обобщения часто не работают - средняя скорость ветра будет сильно зависеть от конкретных условий на вашем участке. Вы можете использовать устройство, называемое анемометром, для измерения скорости ветра на заднем дворе с течением времени - вы даже можете сделать его самостоятельно из старого пластикового пасхального яйца, когда съедите все вкусности внутри.

Пространство для роста

А как насчет места? По данным компании Southwest Windpower, производящей ветряные мельницы, идеальное место для установки ветряной турбины - 20 футов над любым окружающим объектом в радиусе 250 футов. Министерство энергетики также рекомендует, чтобы башня располагалась по крайней мере на одном акре земли, что исключает возможность проживания большинства городских жителей.

Кроме того, многие местные законы запрещают строительство башен или высоких сооружений. После долгих лет обсуждения в городском совете жители города Ислип на Лонг-Айленде, Н.Y., недавно получил рекомендации по установке личных ветряных мельниц: они не могут превышать 45 футов в высоту, располагаться близко к границе участка или быть громче обычного автомобильного движения.

Покажите мне мощность

Однако решающим фактором должно быть то, сколько электроэнергии вы действительно можете произвести. Небольшой ветрогенератор, который можно поставить на заднем дворе, может иметь мощность около одного киловатта. Средняя годовая скорость ветра в девять миль в час может производить более 200 киловатт-часов электроэнергии в год, а средняя скорость ветра в 14 миль в час может производить более 600 киловатт-часов в год.Это звучит хорошо, пока вы не поймете, что средняя семья в Соединенных Штатах потребляет около 10 000 киловатт-часов в год. Даже в очень ветреном месте вам понадобится около 17 небольших ветряных турбин, чтобы привести в действие один дом!

Размер имеет значение

Чем больше лопасти и чем выше скорость ветра, тем большую электрическую мощность может генерировать ветровая турбина. Одна большая ветряная мельница мощностью пять мегаватт может производить 15 000 000 киловатт-часов в год, что достаточно для обеспечения энергии 150 домов.Мы часто не понимаем, насколько велики эти ветряные электростанции, вероятно потому, что мы часто видим их издалека - эта ветряная мельница мощностью пять мегаватт будет стоять почти на 400 футов в высоту или почти на 100 футов выше Статуи Свободы, плюс ее постамент, плюс его основание! Когда дело доходит до ветряных мельниц, безусловно, существует экономия на масштабе, когда непропорционально больше энергии вырабатывается за счет увеличения размера и скорости ветра. Другими словами, удвоение скорости ветра приводит к восьмикратному увеличению мощности ветрогенератора.

Эта экономия на масштабе также влияет на финансовые и энергетические затраты на производство небольших ветряных мельниц. Энергетическая отдача от небольших турбин невысока, что делает как стоимость энергии, так и стоимость производства турбины высокими. В 2008 году Carbon Trust в Соединенном Королевстве опубликовал исследование, показывающее, что из-за такой низкой выработки энергии небольшие турбины фактически являются чистыми источниками выбросов углерода.

Следовательно, для большинства людей установка небольшой ветряной мельницы на заднем дворе принесет столько же пользы для выработки энергии, как установка солнечной панели в сарае.Тем не менее, это может иметь смысл для некоторых домовладельцев, особенно в сельской местности. К счастью, есть несколько компаний, специализирующихся на коммерческих ветряных мельницах. Вот несколько примеров компаний и спецификаций, которые различаются для небольших (10 киловатт или меньше) турбин.

Компания Киловатт
Рейтинг
Ротор
Диаметр
(фут)
Пуск
скорость
(миль / ч)
Турбина
Стоимость
Минимум
Высота башни
(футы)
В изобилии
Возобновляемая энергия
2.5 12 6 12 000 долл. США 43
AeroStar 10 22 8 40
Aerovironment 1 6 5 9
Бергей 10 22 7 23 000 долл. США 60
Переделанный 5 21 4 15 000 долл. США 39
Юго-запад
Ветровая электростанция
2.4 10 8 15 000 долл. США 33,5
Ventera 10 26 6 12 000 долл. США 35
Ветряная турбина
Industries Corp.
10 23 8 32 000 долл. США 80

Хотя малый ветер, возможно, никогда не станет широко распространенным явлением, он обладает огромным потенциалом как возобновляемый и экологически чистый источник энергии на местном и местном уровне.Фактически, Министерство энергетики призвало к 2030 году увеличить долю энергии ветра в электроснабжении страны до 20 процентов. В то время как количество энергии, вырабатываемой ветром, значительно увеличивается каждый год, в 2007 году ветер произвел только 0,8 процента электроэнергии страны. Препятствия на пути к достижению цели Министерства энергетики сейчас не технологические, а связаны с инфраструктурой: проблема передачи чистой энергии от постоянно свежих ветряных электростанций в дома людей, которые могут находиться за сотни миль от них. (В конце концов, люди не часто предпочитают жить в самых ветреных частях самых ветреных регионов страны.)

Для получения дополнительной информации в Интернете имеется множество ресурсов. "Маленький ветер" - это поисковый запрос. Начнем с того, что Американская ассоциация ветроэнергетики - это самопровозглашенный центр ветроэнергетики.


Рэйчел Адамс - кандидат биологических наук.

Самая большая ветряная турбина в мире будет выше, чем Эмпайр-стейт-билдинг

В США растет энергия ветра; мощность возобновляемых источников энергии в стране выросла более чем в три раза за последние девять лет, и в значительной степени ответственны за это энергия ветра и солнца . Теперь предприятия хотят использовать еще больше энергии ветра по более низкой цене, и один из лучших способов снизить затраты - это построить более крупные турбины. Вот почему альянс шести институтов во главе с исследователями из Университета Вирджинии проектирует самую большую в мире ветряную турбину высотой 500 метров - почти треть мили в высоту и примерно на 57 метров выше Эмпайр-стейт-билдинг.

Турбины уже сейчас заметно крупнее, чем были 15 или 20 лет назад. Размер варьируется, но типичные сегодня башни ветряных электростанций достигают около 70 метров в высоту с лопастями около 50 метров в длину.Их выходная мощность зависит от размера и высоты, но обычно она колеблется от одного до пяти мегаватт - в верхнем диапазоне, этого достаточно для питания около 1100 домов. «Есть эта мотивация перейти на более крупные ветряные турбины, и причина в значительной степени в экономике», - объясняет Джон Холл, доцент кафедры механической и аэрокосмической инженерии в Университете Буффало, Южный Уэльс. Одна из причин, по которой гигантские турбины более рентабельны, заключается в том, что на больших высотах ветер дует сильнее и устойчивее. Таким образом, «вы получаете больше энергии» с более высокой структурой, - говорит Эрик Лот, руководитель проекта крупной турбины, который финансируется U.S. Агентство перспективных исследовательских проектов Министерства энергетики - Энергетика (ARPA – E).

Еще одна причина, по которой эксперты по ветру считают, что чем больше, тем лучше: более длинные лопасти турбины также более эффективно улавливают ветер, а более высокие башни позволяют использовать более длинные лопасти. Мощность турбины напрямую связана с ее «рабочей площадью» - круглой площадью, охватываемой вращением лопастей, - объясняет Кристофер Незреки, профессор машиностроения и директор Центра ветроэнергетики Массачусетского университета в Лоуэлле.И это соотношение не является линейным: если длина лезвия удвоится, система может производить в четыре раза больше энергии, объясняет Незрецкий. Он отмечает, что более крупные турбины также имеют более низкую скорость включения - скорость ветра, при которой они могут начать вырабатывать энергию.

Команда

Лота хочет спроектировать систему мощностью 50 мегаватт с лопастями длиной 200 метров, что намного больше, чем у современных ветряных турбин. Если исследователям это удастся, они считают, что турбина будет в 10 раз мощнее существующего оборудования. Но ученые не собираются просто увеличивать размеры обычных конструкций; они кардинально меняют конструкцию турбины.У сверхбольшой машины будет два лезвия вместо обычных трех, что снизит вес конструкции и сократит расходы. Лот говорит, что уменьшение количества лопастей обычно снижает эффективность турбины, но его команда использует усовершенствованную аэродинамическую конструкцию, которая, по его словам, в значительной степени компенсирует эти потери.

Концепция проекта SUMR. Предоставлено: Чао Цинь

. По словам Лота, команда также представляет себе эти гигантские сооружения, расположенные на расстоянии не менее в 80 км от берега, где ветры, как правило, сильнее и люди на суше не могут их видеть или слышать.Но сильные штормы обрушиваются на такие места - например, у восточного побережья США в Атлантическом океане, - поэтому команда Лота столкнулась с трудностью создания чего-то массивного, к тому же относительно легкого и стойкого к ураганам. Чтобы решить эту проблему, исследователи обратились к одному из дизайнерских решений самой природы: пальмам. «Пальмы действительно высокие, но очень легкие конструктивно, и если дует сильный ветер, ствол может согнуться», - говорит Лот. «Мы пытаемся использовать ту же концепцию - проектировать наши ветряные турбины, чтобы они имели некоторую гибкость, чтобы они могли изгибаться и адаптироваться к потоку.”

В проекте команды две лопасти расположены по ветру от башни турбины, а не против ветра, как на традиционных турбинах. Лезвия также меняют форму в зависимости от направления ветра, как у пальмы. «Когда лопасти изгибаются под углом с подветренной стороны, вам не нужно делать их тяжелыми или прочными, поэтому вы можете использовать меньше материала», - объясняет Лот. Эта конструкция также снижает вероятность того, что сильный ветер согнет вращающийся клинок в сторону его башни, потенциально разрушая всю конструкцию [Видео].«Лезвия адаптируются к высоким скоростям и начнут складываться, поэтому на них действуют меньшие динамические нагрузки», - говорит Лот. «Мы хотели бы, чтобы наши турбины могли выдерживать ветер со скоростью более 253 километров в час» в нерабочих условиях. При скорости ветра от 80 до 95 километров в час система отключается, и лопасти отклоняются от ветра, чтобы они могли выдерживать сильные порывы ветра, добавляет Лот.

500-метровая турбина все еще сталкивается с проблемами - есть веские причины, по которым никто еще не построил турбину такого размера: «Как сделать 200-метровые лопасти? Как их собрать? Как построить такую ​​высокую башню? Краны только так высоко поднимаются.А с морским ветром [есть] дополнительные сложности », - говорит Незрецкий. Конструкция группы включает сегментированный лопасть, которую можно собрать из частей на месте, но Незрецкий отмечает, что ветроэнергетика еще не совсем поняла, как сегментировать лопасти. «Есть много исследовательских вопросов, которые необходимо решить», - говорит он. «Это определенно высокий риск, но есть потенциал и для высокой награды. Я не думаю, что эти проблемы непреодолимы ». Холл также сомневается, является ли такая массивная турбина оптимальным размером . «Мы понимаем, что чем больше, тем лучше. Вопрос в том, насколько больше? Нам нужно найти эту золотую середину », - говорит он. «Мы собираемся многому научиться из этого проекта».

Лот и его команда еще не тестировали прототип; в настоящее время они проектируют конструкцию турбины и систему управления, а этим летом строят модель, намного меньшую, чем настоящая, - около двух метров в диаметре. Следующим летом они планируют построить более крупную версию с двумя 20-метровыми лопастями, которая будет вырабатывать мощность менее мегаватта и будет протестирована в Колорадо.Сам Лот не уверен на 100 процентов, что гигантская турбина его команды станет реальностью, но он уверен, что попробовать стоит. «Это очень новая концепция, поэтому [нет] никаких гарантий, что она будет работать», - говорит он. «Но если это произойдет, это произведет революцию в оффшорной ветроэнергетике».

Как построить ветряную электростанцию ​​

Когда дело доходит до выработки электроэнергии, ветер - один из самых устойчивых природных ресурсов Земли. Чтобы использовать его, все, что вам нужно сделать, это построить ветряную турбину, которая преобразует движение воздуха в кинетическую энергию.Однако, чтобы делать это в больших масштабах, вам понадобится ветряная электростанция - набор специально разработанных ветряных турбин, расположенных поперек ландшафта или океана, где дуют устойчивые и сильные ветры. Ветряные турбины имеют несколько лопастей, которые расположены высоко на башнях, которые вращаются на ветру и собирают энергию.

Отраслевые эксперты говорят, что у Соединенных Штатов достаточно ветровых ресурсов, чтобы эффективно удвоить их текущую мощность ветрогенерации, и что это принесет множество экологических выгод.В одной только Америке энергия ветра предотвращает выброс около 62 миллионов тонн парниковых газов и ежегодно экономит 20 миллиардов галлонов воды.

Потенциальные препятствия на пути строительства ветряных электростанций включают общественные споры по поводу размещения ветряных турбин, проблемы с разрешениями, финансовые проблемы и технические вопросы, такие как необходимость инфраструктуры для передачи энергии в электрическую сеть, обслуживающую потребителей. Однако, если вы хотите построить собственную ветряную электростанцию, это не так уж и сложно.

Начало работы: планирование ветряной электростанции

Строительство ветряной электростанции - это большой проект, требующий от команды специалистов для решения многих аспектов проекта - от концепции и планирования до реализации. Планирование особенно важно для этого типа генератора энергии. Надлежащее расположение должно быть оценено на предмет любых рисков для дикой природы, должны быть получены разрешения, а сами турбины должны быть испытаны.

Во-первых, убедитесь, что вы выбрали место, в котором достаточно ветровых ресурсов.По данным Американской ассоциации ветроэнергетики, на лучших площадках для коммерческих ветряных электростанций скорость ветра составляет 13 миль в час (6 метров в секунду) или более. Хотя может показаться, что чем сильнее ветер, тем лучше, слишком сильный ветер может вызвать нагрузку на оборудование и сделать проект более дорогостоящим.

Специальные карты скорости ветра могут помочь вам определить регион с подходящими ветровыми ресурсами. Например, Министерство энергетики США предлагает удобную карту ветров. Вы также можете самостоятельно измерить энергию ветра, используя инструмент, называемый анемометром, на месте, которое вы планируете.Некоторые штаты даже предлагают программы ссуды на анемометры. Ваш инженер может использовать специализированные службы и программное обеспечение для оптимизации местоположения, например Windnavigator и GH WindFarmer, которые анализируют топографию, погодные условия и аэродинамику.

Кроме того, вам необходимо учитывать особые факторы, связанные с целевым местоположением, такие как доступ к дороге, потенциальные шумовые воздействия, мерцающие тени от лопастей и культурные особенности.

Оценка рисков для дикой природы

Вращающиеся лопасти ветряных турбин могут убить находящихся под угрозой исчезновения птиц, летучих мышей, хищников и водоплавающих птиц, поэтому лучше всего размещать турбины вдали от оживленных коридоров дикой природы и ежегодных миграционных маршрутов.Консультативный комитет по использованию ветряных турбин Службы охраны рыбных ресурсов и диких животных США рекомендует многоуровневый подход, который включает предварительную оценку, характеристику участка и полевые исследования для прогнозирования и оценки видов и местообитаний, пострадавших от ветряной электростанции.

Как разработчик сайта, вам необходимо тесно сотрудничать с соответствующим государственным учреждением (или органом, выдающим разрешения), чтобы сократить и смягчить смертность животных из-за ветряной электростанции. В некоторых случаях вам может быть разрешено построить ветряную электростанцию ​​в уязвимых местах, если вы измените ее работу, чтобы она была более благоприятной для дикой природы.Например, вам может потребоваться временно остановить турбины в сезон миграции или в периоды слабого ветра, когда летучие мыши наиболее активны, а выработка энергии минимальна.

Затраты и финансирование ветряных электростанций

Подумайте, сколько энергии вы хотите произвести - или сколько может произвести сайт - и сколько денег вы можете потратить. Только покупка ветряных турбин может обойтись вам в среднем 1,37 миллиона долларов за мегаватт мощности.

Как правило, коммунальным предприятиям дешевле развивать ветроэнергетические объекты, чем частным инвесторам, потому что коммунальные предприятия могут использовать благоприятные финансовые структуры, которые сокращают затраты примерно на 30%, или примерно на 1%.4 цента за киловатт-час, согласно отчету, финансируемому Министерством энергетики США.

Государственные программы стимулирования также облегчают строительство ветряной электростанции. Налоговый кредит на производство (PTC) теперь предоставляет налоговый кредит в размере 2,3 цента за киловатт-час в течение первого десятилетия работы.

Чтобы спрогнозировать нормированную стоимость финансирования вашего ветроэнергетического проекта, включите ваши конкретные детали в интерактивные инструменты BITES (сценарии зданий, промышленности, транспорта и электричества), предоставленные Национальной лабораторией возобновляемой энергии.Вы также можете просмотреть базу данных государственных и федеральных стимулов для возобновляемых источников энергии.

Убедитесь, что ваша ферма соответствует требованиям законодательства

Производители электроэнергии регулируются федеральными законами, такими как Закон о политике регулирования коммунальных предприятий 1978 года (PURPA), Закон об энергетической политике 2005 года (EPACT 2005) и Закон об энергетической независимости и безопасности 2007 года (EISA 2007). В отдельных штатах также существует разное толкование того, как применяются эти федеральные законы, и у них разные полномочия по продвижению возобновляемых источников энергии через законодательство о стандартах портфеля возобновляемых источников энергии (RPS).

Юрист или консультант, специализирующийся на развитии возобновляемых источников энергии, может помочь вам сориентироваться в законах, регулирующих ваш предлагаемый проект. Эти люди также могут помочь вам получить различные разрешения на строительство и охрану окружающей среды, которые вам понадобятся в государственных учреждениях.

Если ваша ветряная электростанция будет находиться в государственной собственности или у нее есть партнер из федерального агентства, получение разрешения может зависеть от формального процесса оценки воздействия на окружающую среду. Например, ветряные электростанции, размещенные на территории, управляемой U.S. Bureau of Land Management руководствуются определенными руководящими принципами, предназначенными для защиты охраняемых на федеральном уровне видов и других природных ресурсов.

Определение оборудования и конструкции ветряной электростанции

Современные ветряные турбины изящнее и больше, чем старомодные ветряные мельницы, с огромными лопастями и башнями высотой с высотные здания. Точное размещение этих турбин на ветряной электростанции влияет на общее производство энергии.

Как правило, чем больше размер ветряной турбины, тем выше ее генерирующая мощность.Наиболее часто устанавливаемая ветряная турбина имеет номинальную мощность 1,5 мегаватт и может питать до 500 домов, но более новые модели работают еще больше. На веб-сайте General Electric указаны мощности до 3,4 мегаватт для использования на суше и до шести мегаватт для использования на море. Среди других ведущих производителей ветряных турбин Vestas, Goldwind, Enercon, Siemens, Sulzon, Gamesa, United Power, Ming Yang и Nordex.

Для больших и тяжелых ветряных турбин требуется более крупный фундамент, и их установка стоит дороже.Морские ветряные турбины должны быть спроектированы для условий океана. Ветровые турбины редко работают на полную мощность, поскольку их выработка энергии зависит от погодных условий.

Помимо ветряных турбин, ветряная электростанция требует системы сбора электроэнергии, трансформаторов, сети связи и подстанций. Более того, для мониторинга производительности используется информационная система диспетчерского управления и сбора данных (SCADA). Инженер может порекомендовать подходящее оборудование и размещение турбины в зависимости от вашего объекта, финансов и целей в области энергетики.

Емкость безопасной передачи

Если вы планируете коммерческую ветряную электростанцию, вам нужен способ доставки энергии оптовым или розничным покупателям. Обычно для этого требуются линии передачи, связывающие продукцию вашей ветряной электростанции с сетью передачи электроэнергии - энергосистемой - в вашем регионе. Коммерческие ветряные электростанции в удаленных местах могут столкнуться с трудностями при обеспечении пропускной способности и взаимосвязанности с сетью.

В качестве альтернативы, небольшие ветряные электростанции можно использовать в качестве выделенного источника электроэнергии для сообщества или бизнеса.В этих случаях ветряной электростанции может не потребоваться подключение к обычной электросети. Тем не менее, чтобы продать избыточную мощность, вам по-прежнему нужен способ ее доставки в электроэнергетику.

Для получения дополнительной информации обратитесь в Национальную лабораторию возобновляемых источников энергии (NREL), которая работает с разработчиками ветроэнергетики для обеспечения пропускной способности и взаимосвязанности. Группа Utility Wind Integration Group также предоставляет ресурсы для подключения ветряной электростанции к электрической системе.

Установите, протестируйте и запустите оборудование

Строительство ветряной электростанции может быть завершено в течение нескольких месяцев.Однако сначала вам может потребоваться проложить к участку дороги для перевозки ветряных турбин и другого оборудования.

Для каждой ветряной турбины вам нужно будет выкопать яму и заполнить ее железобетоном, который послужит стабилизирующим основанием. Этот процесс более сложен в каменистых условиях или на морских ветряных электростанциях. После того, как фундамент будет подготовлен, вам нужно будет установить турбины с помощью специальных подъемников.

Затем вы установите электрическую проводку и системы и проведете тесты, чтобы убедиться, что все элементы работают правильно.Часто требуется шесть месяцев, прежде чем изгибы будут устранены и ветряная электростанция выйдет на полную коммерческую производственную мощность.

Каждой ветряной турбине требуется около недели регулярного технического обслуживания в год. Американская ассоциация ветроэнергетики заявляет, что для обслуживания каждых 10 мегаватт установленной генерирующей мощности требуется один специалист по ветроэнергетике.

Ветряные турбины и возобновляемые источники энергии

Системы ветряных турбин являются источником возобновляемой энергии.Они больше всего подходят для ветреной сельской местности.

На этой странице:

  • Конфигурация системы ветрогенератора
  • Мощность системы ветрогенератора
  • Скорость и мощность ветра
  • Контроль отключения
  • факторы, влияющие на мощность генерации
  • Установка системы ветрогенератора
  • подключение к электросети
  • ветер загрязнение генератора.

В оптимальных условиях эффективность ветрогенератора по преобразованию энергии в электричество составляет около 45%, хотя исследования Новой Зеландии показывают, что эффективность 1040% чаще встречается в повседневной работе.

Исследования показали, что средняя скорость ветра в конкретном месте должна превышать не менее 68 метров в секунду (м / с), чтобы небольшая ветряная турбина была экономически жизнеспособной.

При рассмотрении затрат и экономической целесообразности имейте в виду, что дополнительные расходы, связанные с согласием затрат, фрахтом, бетонным фундаментом, электропроводкой могут быть эквивалентны 3080 процентам стоимости самой турбины. Турбина мощностью 2 кВт может стоить около 2030 000 долларов, включая монтаж. Затраты на техническое обслуживание также следует учитывать, как правило, ветряные турбины имеют более высокие требования к техническому обслуживанию, чем, например, фотоэлектрические системы.Некоторые расчеты показали, что во многих случаях солнечная электрическая система, вероятно, будет более рентабельной, чем ветряная турбина. По данным Управления электроэнергетики, в последние годы почти не устанавливались бытовые или небольшие ветряные генераторы.

Они больше подходят для удаленных мест, так как могут создавать шум и могут считаться неприглядными.

Турбины могут не работать в городских условиях, потому что препятствия, такие как здания, имеют тенденцию делать ветер турбулентным и неустойчивым.

Конфигурация системы ветрогенератора

Типовая ветряная турбина для выработки электроэнергии

Компоненты ветряной турбины

Ветряная турбина включает:

  • лопастей турбины гребных винтов с двумя, тремя или пятью лопастями, установленными на горизонтальном валу (это дает более высокую мощность, чем когда они установлены на вертикальном валу) и изготовленных из легкого материала, такого как углеродное волокно, стекловолокно или дерево, достаточно прочное, чтобы противостоять силам ветра.
  • хвостовая часть обычно представляет собой плавник, который вращает корпус ветрогенератора, чтобы повернуть турбину в направлении ветра, с плавником непосредственно по ветру
  • Электроэнергия переменного тока генератора переменного тока вырабатывается обмотками ротора, соединенными с валом от турбины
  • выпрямитель преобразует переменный ток в постоянный ток для электричества, которое направляется в аккумуляторную систему хранения (выпрямитель может быть расположен в генераторе переменного тока или в отдельном блоке управления вдали от башни)
  • электрические кабели передают электричество от генератора к система электропитания или аккумуляторов
  • контактные кольца предотвращают скручивание кабелей, поскольку в противном случае они будут скручиваться внутри башни при вращении корпуса турбины
  • Электроэлемент всегда вырабатывается, когда турбина вращается, поэтому, если мощность превышает емкость накопителя , он должен быть перенаправлен на фиктивную нагрузку (обычно электрический элемент, который сильно нагревается) или продан (если это разрешено в t plan) к розничному продавцу электроэнергии
  • башня конструкция (обычно из стали, бетона или дерева), которая удерживает турбину высоко в воздухе и позволяет узлу турбины наверху вращаться против ветра для жилых помещений, обычно это мачта Стойка с растяжками
  • растяжка удерживает опору мачты в рабочем положении
  • Стойка и лебедка позволяют опускать турбину для технического обслуживания
  • Бетонный фундамент для турбины мощностью 23 кВт на вышке 1015 м обычно требуется 35 м 3 фундамент железобетонный.

Мощность ветрогенератора

Ветрогенераторы обычно рассчитаны на 13 кВт. Это обычно обеспечивает от одной трети до половины потребности жилого дома в электроэнергии, в зависимости от местных ветровых условий и энергопотребления дома. В открытом месте генератор такого размера может обеспечить все потребности в электроэнергии и обеспечить ее избыток. Ветряные генераторы большего размера доступны для фермерских хозяйств и сельских населенных пунктов. Фактическая выходная мощность турбины обычно составляет от 25% до 30% от номинальной теоретической максимальной мощности.Выходная мощность ветрогенератора обычно рассчитывается на указанную скорость ветра, а номинальная скорость ветра может варьироваться в зависимости от системы и производителя.

Мощность ветряных генераторов по выработке электроэнергии прямо пропорциональна количеству используемого ветра, которое само по себе является функцией скорости ветра и чистоты.

Скорость и сила ветра

Плотность энергии ветра - это количество ватт электроэнергии, производимой на квадратный метр воздушного пространства (Вт / м).Это значение обычно дается на высоте 10 или 50 м над землей.

В целом, доступная мощность ветровой генерации определяется средней скоростью ветра в течение года для каждого местоположения. Вокруг Новой Зеландии средняя скорость ветра обычно выше в регионах:

  • вдоль побережья между Северным и Южным островами
  • в горных хребтах и ​​непосредственно к востоку от них
  • к вершинам хребтов или вершинам долин.

В случае больших турбин увеличение скорости ветра приводит к значительно большему увеличению выработки энергии, когда скорость ветра удваивается, вырабатываемая энергия может увеличиваться до восьми раз.Однако исследования в Новой Зеландии с небольшими домашними турбинами показали, что увеличение обычно более линейное, когда скорость ветра удваивается, вырабатываемая энергия удваивается.

Скорость ветра колеблется, что влияет на мощность производства ветровой электроэнергии и рабочие характеристики. В целом, скорости ветра следующие:

  • Минимум 8 км / ч (2 м / с) требуется для запуска большинства малых ветряных турбин.
  • 12,6 км / ч (3,5 м / с) - это типичная скорость включения, когда небольшая турбина начинает вырабатывать энергию.
  • 3654 км / ч (1015 м / с) производит максимальную мощность.
  • При максимальной скорости 90 км / ч (25 м / с) турбина останавливается или тормозит (скорость отключения).

Энергию ветра на объекте можно получить с помощью измерительного прибора, установленного на опоре на высоте будущего ветрогенератора. Сбор данных за целый год, как правило, нецелесообразен, поэтому данные за пару месяцев можно взять и сравнить с данными местной метеостанции, а затем экстраполировать на год. К устройствам относятся:

  • анемометр, дающий среднесуточную скорость ветра
  • сумматор ветра, дающий мгновенную скорость ветра и общий ветер за длительный период.

Элементы управления выключением

Доступны следующие варианты управления вырезом:

  • задействовать тормоз, чтобы полностью остановить турбину и повернуть лопасти (уменьшить их угол к ветру), чтобы повернуть ее лицом в сторону от ветра
  • наклонить назад или лечь на турбина (это называется регулированием наклона вверх)
  • Управляет турбиной от ветра за счет аэродинамики и силы тяжести (это известно как autofurl)
  • Регулирует скорость вращения с помощью воздушного тормоза для получения постоянной мощности
  • опускание лопастей (уменьшите их угол к ветру), чтобы уменьшить скорость турбины.

Факторы, влияющие на генерирующую мощность

Производительность системы зависит от ее эффективности при преобразовании давления ветра в инерцию вращения турбины. Данные должны быть доступны у поставщика системы. Это увеличивается с:

  • больший диаметр турбины, больше площадь лопастей турбины, на которую ветер может воздействовать, а также больший риск навязчивого шума
  • соответствующий профиль лопасти для местной скорости ветра это зависит от средней скорости ветра, а также от того, ветер постоянный или приходит в короткие периоды высокой скорости
  • меньшие потери на трение в узле вала турбины.

Генерирующая мощность снизится, если турбина расположена:

  • ниже скорости ветра скорость ветра увеличивается с высотой над землей, при этом рекомендуется минимум 10 метров
  • в турбулентном воздушном пространстве с подветренной стороны от препятствия (например, деревья, холмы, здания, сооружения) с подветренной стороны турбулентность будет увеличиваться в два раза по высоте препятствия на расстоянии, примерно в 20 раз превышающем высоту препятствия
  • , на расстоянии от препятствия с наветренной стороны, которое более чем в 10 раз превышает высоту препятствий.
Расположение ветряной турбины

Ветровые турбины работают лучше всего, когда нет турбулентного потока воздуха для привода лопастей турбины.

Установка ветрогенераторов

Система ветряных генераторов:

  • потребует согласия на строительство и согласия ресурсов.
  • должен быть установлен в пределах 100 м от системы электроснабжения или накопления, чтобы уменьшить потери в линии. имеет бетонную опору для башни (и каждую растяжку)
  • должен иметь гашение вибраций в башне (от вращающих сил турбины), если она соединена со зданием
  • должен иметь защиту от крупных животных на уровне земли, они любят царапаться на мачте и растяжках
  • должны быть установлены молниеотводы для защиты электронных компонентов от ударов молнии.
  • требует достаточной площади для опускания и подъема мачты для обслуживания и ремонта.

Удовлетворение спроса на электроэнергию

Электроэнергия от ветрогенератора может быть доступна в любое время дня, но уровни выходной мощности будут варьироваться в зависимости от скорости ветра. Избыточный выход, генерируемый как переменный ток, преобразуется в постоянный ток выпрямителем для хранения в батареях. Это позволит обеспечить пиковое потребление, превышающее мощность генератора.

Маловероятно, что очень маленькие турбины смогут удовлетворить общий спрос домохозяйств на энергию. Использование твердотопливной горелки для отопления помещений и солнечных панелей для нагрева воды поможет снизить спрос на электроэнергию, но для систем, которые не подключены к сети, иногда может потребоваться дизельный генератор.

Загрязнение ветрогенератора

Ветрогенераторы могут создавать шум и вибрацию и оказывать значительное визуальное воздействие. Шум может исходить от лопастей турбины, редуктора (если используется) и щеточного механизма, а также от ветра, проходящего мимо башни и растяжек. Шум и визуальное воздействие могут быть проблемой для соседей, а вибрация может быть проблемой, особенно если турбина расположена на крыше.

Эти факторы должны влиять на решения о расположении, размере и высоте ветряного генератора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *