Как сделать из мини моторчика генератор: Как сделать мини генератор — Морской флот

Содержание

Микро ветрогенератор на основе моторчика от струйного принтера

Обычно дует лёгенький ветерок но мой мини ветрячёк периодически раскручивается до очень больших оборотов, винт вращается с такой скоростью, что его практически не видно, правда при таких оборотах доносится едва слышное рокатание лопастей. Сейчас этот ветрячёк поддерживает в рабочем состоянии старенький, но рабочий аккумулятор, чтобы тот не разряжался. Максимальная мощность ветрячка всего до 100мА, возможно он может выдать и больше, но у нас обычно дует небольшой ветер, и замерял на обычном ветерке.

Конструкцию подобных ветрячков подсмотрел на одном заморском сайте и решил повторить, так и родился этот малыш. В качестве генератора использовал шаговый моторчик от давно нерабочего и пылившегося у меня струйного принтера. Разобрав его выкрутил маторчик. Далее посмотрел, повертел, покрутил руками, померил сколько даёт, давал очень мало, но вольты поднимались выше 12-ти, а значит он теоретически мог заряжать аккумулятор.

Далее из транзистора сделал крепление для лопастей. Транзистор просверлил по диаметру вала на котором стаяла зубчатая насадка, в общем под её размеры. Надел на вал транзистор, капнул клея и покрутил убедившись что всё ровно. Потом окончательно зафиксировал с помощъю эпоксидки. Развёл немного и залил отверстие транзистора, дополнительно защитил моторчик от непогоды замазав дырочки в моторчике. Ниже фотография сего генератора.

Далее из отрезка ПВХ трубы, диаметром 110мм, вырезал лопасти, на трубе нарисовал заготовку, которую вырезал отрезной машинкой. Размеры взял примерные ширина получилась 9см, а размах винта 48см. Просверлил отверстия и прикрутил винт к моторчику-генератору с помощъю маленьких болтиков.

За основу использовал отрезок 55-той ПВХ трубы, далее вырезал хвост из фанерки, и добавил кусочек от 110-той.Моторчик вклеил внутри трубы. После сборки получилась вот такая ветроэлектростанция. Сразу собрал выпрямитель.Так как этот мотор не хотел давать много вольт на малых оборотах, то собрал по схеме удвоения и включил последовательно.

Диоды взял HER307, конденсаторы — 3300мкф

Схему укутал в полиэтилен и вставил в трубу выпрямитель, потом мотор и привязал его проволокой сквозь просверленные дырочки, пространство замазал силиконом. Так-же силиконом потом замазал все дырдочки сверху, а снизу просверлил одно отверстие на всякий случай, чтобы если что вода стекла, и испарялся конденсат.

Хвост закрепил насквозь болтом, полукруглый хвост вставил и привязал проволокой, он и так прочно держится. Нашёл центр тяжести, просверлил (диам. 9мм.) Ещё просверлил диам. 6мм два болта М10, насквозь, под ось. (Болты М10 здесь служат «подшипником» оси) Ввернул сверху и снизу болты М10 в трубу, смазал длинный болт М6 солидолом и всё скрутил, получилось довольно жёстко. Болт-ось (М6) прикрутил к уголку, а его к палке. Сверху на болт М10 одел на силиконе пробку, теперь ось воды не боится. Всё ветрогенератор изготовлен.

Для мачты взял несколько брусочков. которые скрутил саморезами, закрепил ветряк и поднял на ветер. Подключил к аккумулятору, зарядка идёт, но очень слабенькая, поддерживает аккумулятор от естественного разряда. Так как верячок крутиться, то остался доволен, по крайней мере буду знать откуда ветер дует.Этот вариант — как сказано на том сайте — little weekend project, то-есть маленький проект для выходных, для удовольствия что-нить поковырять, тем более я не потратил ни копейки… клей не в счёт . Так по идее может пару маленьких светодиодов зажечь, или мобильный телефон за пару суток зарядить, но скорее всего такой слабый ток телефон примет за плохой контакт и отключит, написав на дисплее плохое соединение.

В будущем если будет время и желание может сделаю на освещение двора, вот только второй такой-же соберу и аккумулятор небольшой поставлю, или несколько аккумуляторных батареек. Для этого остался ещё один шаговый, только этот выдаёт под 2х20вольт от прокручивания рукой, но ток маленький. А второй — на щётках, сразу постоянка. От руки 10 вольт, КЗ — 0,5 Ампера. А ещё всё-же буду мучить автогенератор, вот только магниты дождусь.

Генератор из двигателя микроволновой печки » Изобретения и самоделки

Во-первых, если у вас есть ненужная микроволновка и в ней целый двигатель, стоит задуматься о получении из него электричества. Если нет, то купите в китайском магазине по цене от 1 доллара. Генератор имеет смысл в походных условиях, когда нужно зарядить телефон или сделать освещение в палатке и т.д.

В каждой микроволновой печи есть привод для вращения блюда. Это нужно для того, чтобы микро волны равномерно воздействовали на приготавливаемую пищу со всех сторон. Если у вас имеется старая и ненужная микроволновка, то этот привод можно из нее извлечь и он будет иметь примерно такой вид:

Это по сути синхронный электродвигатель с редуктором внутри корпуса. Кстати именно из-за это редуктора выходящий вал мотора и смещен относительно центра.
Особенностью этого двигателя является то, что его ротор построен на постоянных магнитах, а следовательно мотор не только может преобразовывать электрическую энергию в механическую, но и наоборот.
Выходное напряжение естественно будет зависит от частоты вращения его вала, но из-за внутреннего редуктора она небольшая. Выходная мощность которую можно получить с помощью такого генератора порядка 3-5 Вт.

Тестируем электромотор от микроволновки в роли генератора

Давайте это и проверим. Подключим моторчик к тестеру для замера напряжения.

Вращать вал будем обычным шилом, чтобы создать удобный рычаг. В валу есть отверстие для этого.

Даже при незначительном вращении мотор вырабатывает примерно от 150 до 250 Вольт. А если уж ещё немного увеличить частоту вращения, то показания доходят и до 550 В!

 

Подключаем нагрузки

Теперь попробуем нагрузить наш генератор. Для начала возьмем светодиодную лампу на 220 В и 3 Вт.

Как видите, светит очень даже хорошо.

Далее возьмем люминесцентную лампу и подключим ее напрямую без всяких цепей запуска.

Горит! Электроника для розжига не нужна, так как напряжения предостаточно.

Далее подключаем лампу накаливания на 220 В.

Увы, она не загорелась. Мощности генератора явно не хватает. Оно и понятно.
Подключаем зарядное устройство от мобильника.

Подключаем мобильник к зарядке, вращаем вручную.

Зарядка идет, сотовый заражается!

Заключение

Применение данному генератору найдется много. Туристы, охотники, рыбаки точно оценят идею и скорей всего возьмут ее на вооружение. Плюс такого источника тока является то, что он всегда готов к работе, не боится сырости, холода, чего так боятся все литий-ионные повербанки.

Смотрите видео


https://sdelaysam-svoimirukami.ru

Генератор из моторчика

Изменено в августе 2018 г.

Используя двигатель от оргтехники можно изготовить самодельный генератор из моторчика от принтера и другой оргтехники, который удобно использовать в походе для зарядки фонариков, телефонов и других девайсов соответствующей мощности. Для того, чтобы сделать этот аппарат, не требуется особых знаний или навыков.
В этом генераторе использован механизм вращения с повышающей передачей 1 к 12. При вращении рукоятки без нагрузки он вращается легко, но при подключении лампочек нагрузка увеличивается. При быстром вращении генератор на движке от оргтехники (принтер) выдает мощность 5 ватт. Такой мощности даже при медленном вращении хватит, чтобы заряжать аккумулятор телефона, как показано на видео.


Если вам нужно изготовить демонстративную установку для выработки электричества, то есть хороший материал про это. А если прикольно сделать приборчик для кухни, то – эта статья для вас.

Комментарии

Chakat Netstalker
Сюда бы двигатель Стирлинга добавить! Посмотрел ваши видео и вспомнил историю из жизни. Дело было в далеких 90-х.
Как-то мой друг позвал меня в деревню к своему дедушке. Мои родители такому сообщению были рады так как намечался ремонт и чтоб я не мешался они согласились. Дедушка у друга был рукастый и как-то давно до появления внука так сказать соорудил странный агрегат, кушающий дрова.

Так вот, в 90-е многие любили передачу “денди новая реальность” и я тоже.
И вот в один прекрасный день мы пошли с другом на речку порыбачить, да не подумали что будет дождь с грозой:(наловили не много да еще прибежав мокрыми домой, поняли что у нас в деревне после грозы куда-то пропало электричество и любимой теле передачи нам не видать. Но дедушка друга нас обрадовал. Если почистите картошку и наловленную рыбу я вам включу маленький телевизор. Мы шустро почистили картофан и мелочь речную. Пока мы чистили рыбу и картошку дед растопил чудо печку которая пыхтела как паровоз 0.0.

Потом дед выкинул через форточку провод, один конец подключил к печке, а другой к телевизору Шилялис. В тот вечер нам было наплевать на маленький экран и черно-белую картинку. Мы были и этому рады, ведь там показывали новинки игр для денди.
Пока смотрели телик, этот кулибин на ней же приготовил обалденную уху и классный деревенский чай.
И только с появлением интернета я узнал, что это был двигатель Стирлинга, работающий на дровах.

Здорово! Молодец автор! Для походных условий – вещь незаменимая и в то же время компактная. А как насчёт домашних условий? Прошу, оцените идею: берём старенький велосипед и делаем из него вело-тренажёр. На заднее колесо крепим генератор и… Поехали! Встаём с утра и делаем 10-минутную заядку на вело-тренажёре, тем самым заряжая не только себя, но и свой ноутбук. После чего садимся и работаем на ноутбуке час, а потом снова зарядочку… Как известно, можно немало мощности выжать своими ногами, катаясь на велике! Вопрос: насколько это реально, если потребление ноутбука составляет 65 Вт (может, на самом деле меньше – не знаю)? Получится ли сделать отношение работа-полезность: 1/6 (10 мин крутить педали – 60 мин работать на ноутбуке)?

Джон Жеон
Игорь, если вас интересует каким образом ток меняет направление, когда рукоятку начинаешь вращать в том же направлении, что и двигатель, то это легко объясняется. При вращении ротора двигателя в нём образуется противо ЭДС, и она будет возрастать до тех пор пока не будет приблизительна равна напряжению подаваемого на двигатель(именно поэтому обороты зависят от напряжения).Когда вы начинаете вращать рукоятку быстрее, чем двигатель то противо ЭДС увеличивается и становится больше напряжения подаваемого на двигатель и в этот момент двигатель переходит в режим генератора.

Вопрос\Ответ по генераторам

Вопрос: Если загорелась лампа аккумулятора на панели приборов, то это точно нет зарядки и сгорел генератор?

 

В большинстве случаев это именно так. Индикатор также будет светиться, если напряжение от исправного генератора «не доходит» до аккумуляторной батареи по причине, например, сильной коррозии, перегорания или обрыва силового провода от генератора или отсутствия контакта в месте сопряжения силовых проводов. Часто такое соединение клемм силовых проводов от генератора и аккумулятора происходит на одном из болтов втягивающего реле либо непосредственно на «плюсовой» клемме аккумулятора, которые могут подвергнуться сильной коррозии.

Вопрос: Из генератора слышен тонкий свист, подшипники недавно менял. Что может «свистеть» в генераторе?

Тонкий «электрический» свист может появиться при нарушении соосности ротора относительно статора генератора при его разборке-сборке, как результат недостаточного или чрезмерного стягивания передней и задней крышек генератора стяжными шпильками. Также свист может появиться при определенном износе щеток и коллектора генератора. Наконец, не исключена механическая природа такого «свиста», например, при расслоении изоляционных кембриков, входящих в конструкцию ротора и статора, или же банальное попадание внутрь генератора каких-либо посторонних частиц. Кроме того, часто источником «свиста» оказывается не генератор, а старый приводной ремень. В любом случае, на наших сервисных центрах могут определить и устранить источник подобных звуков.

Вопрос: При запуске мотора контрольная лампа на панели приборов вообще не горит, зарядки на «холостых» нет. Зарядка появляется, если только как следует «газануть». В чем проблема?

Проблема, скорее всего, в цепи возбуждения генератора, точнее-в её отсутствии. На больших же оборотах многие генераторы способны самовозбуждаться, поскольку магнитопровод ротора, так называемые «клювы», всегда имеет некоторую остаточную намагниченность (даже при неисправной цепи возбуждения). Схемотехника таких генераторов должна содержать дополнительные выпрямительные диоды, которые самостоятельно питают цепь реле-регулятора после запуска двигателя. Поскольку контрольная лампа является элементом первичной цепи возбуждения генератора, то зачастую банальное перегорание этой лампы может привести к подобному эффекту. Либо находится в обрыве провод от этой лампы с панели приборов до клеммы возбуждения генератора. Такая простейшая схемотехника была характерна для большинства европейских машин вплоть до начала 2000-х.

Вопрос: При замене АКБ перепутали клеммы. Из генератора пошел дым. Заводить теперь боимся. Что делать?

Знакомая история. Надо снимать генератор и нести в диагностику в любой наш сервисный центр. Крайне вероятно, что сгорел диодный мост или статорная обмотка генератора. Все «лечится», как обычно, за час-полтора. В любом их наших сервисных центров Вам оперативно заменят вышедшую из строя деталь и выдадут гарантию на произведенный ремонт.

Вопрос: Какой толк от модного шкива на моем генераторе, который ещё крутится только в одну сторону, если он уже третий раз за 7 лет накрывается и стоит мама не горюй? Можно ли его заменить на обычный?

 

 

Установка шкивов с обгонной муфтой на современные генераторы — это не дань моде, а вынужденная мера. Подобные шкивы позволяют сглаживать влияние неравномерности вращения приводного ремня при разных режимах работы двигателя, особенно дизельного, и особенно при резком торможении двигателя, или же при резком изменении нагрузки в электроцепи автомобиля, например, включении/выключении кондиционера, дальнего света и т. д., что также приводит к достаточно резкому изменению нагрузки на двигатель, и, соответственно, на приводной ремень генератора. Обычный шкив при этом может «пробуксовывать», резко увеличивая износ ремня и уменьшая его срок службы. Нередки при этом и случаи обрыва ремня со всеми вытекающими последствиями. К сожалению, конструкция подобных шкивов, как правило, с многорядными роликами, достаточно технологически сложна, что сказывается на их цене, а надежность, как показывает практика, недостаточна. Средний срок службы таких шкивов - 60-100 тыс. км, что уже в разы меньше срока службы тех же подшипников генератора. Ставить обычные шкивы вместо шкивов с обгонной муфтой теоретически можно, но только на собственный страх и риск, учитывая возможные последствия, поскольку ни один автопроизводитель никогда официально не даст согласия на такую замену! На наших сервисных центрах мы можем предложить как оригинальные шкивы с обгонной муфтой, так и более дешевые шкивы альтернативных производителей, которые всегда находятся в наличии.

Вопрос: В каком диапазоне должно быть выходное напряжение генератора во время работы?

При всей простоте вопроса ответ на него не столь очевиден и однозначен. Производители применяют в большинстве автомобильных генераторов реле-регуляторы с напряжением отсечки от 13.9 до 15.1 Вольт. Но при максимальной нагрузке выходное напряжение генератора, скажем, с отсечкой в 13,9 Вольт может «провалиться» и до 13,0-13,2 Вольт. Для большинства электрооборудования автомобиля эта разница выходного напряжения генератора не столь критична, но вот для зарядки аккумулятора она весьма существенна. Но ещё более существенной при эксплуатации аккумулятора является температура окружающей среды, от которой зависит плотность электролита батареи. В идеале определенному типу батареи при определенной температуре должно соответствовать своё напряжение зарядки. Поэтому рекомендация, что напряжение зарядки должно быть не меньше, скажем 13,6 Вольт, возможно, будет оптимальной для африканского региона, либо для ОАЭ, но будет явно безграмотной например для Якутии или для Магаданской области. И опять-таки 14,8 Вольт в качестве эталона для автомобилей регионов как например Якутия либо Магаданская область окажутся губительными для аккумуляторов в Африканских странах или ОАЭ («закипят»). Так что, с одной стороны, технически грамотно было бы искать ответ на этот вопрос у конкретного производителя автомобиля, произведенного им именно для вашего региона! И всё же, с другой стороны, на основании многолетней практики ремонта генераторов и с вышеупомянутой оговоркой считаем, что для Средней полосы России выходное напряжение генератора при его номинальной отдаваемой мощности должно быть не менее 13.8 Вольт, а при минимальной нагрузке не должно превышать 14,8-14,9 Вольт. На некоторых автомобилях американского производства допустимо выходное напряжение генератора и 15,1 Вольт. К слову сказать, уже появились автомобили с «умной» системой зарядки аккумулятора, учитывающей режим его эксплуатации, степень разрядки, температуру окружающей среды и т. д., обеспечивающей оптимальное напряжение зарядки вне зависимости от выходного напряжения генератора.

Вопрос: Как измерить ток, который выдает генератор в сеть автомобиля? Вроде амперметр надо ставить в разрыв цепи, но не резать же автомобильные провода ради этого?

 

Действительно, обычный тестер здесь не подойдет, но провода резать нет необходимости, поскольку давно существуют приборы под названием «токосъемные клещи», позволяющие производить замеры постоянного тока, протекающего в электропроводке, без разрыва электроцепи. К сожалению, по нашим наблюдениям на многих крупных автосервисах и даже дилерских центрах автоэлектрики зачастую не имеют понятия о существовании подобных весьма полезных приборов. Все сервисные центры Компании Вольтаж оснащены токосъемными клещами.

Вопрос: В генераторе, похоже, загремели (зашумели) подшипники. Сколько так ещё можно ездить?

Можно, конечно, ездить до тех пор, пока подшипники вообще не развалятся и генератор не заклинит. Правда, при этом возможен обрыв приводного ремня со всеми вытекающими последствиями, да и при таком варианте есть большая вероятность, что генератор станет вовсе неремонтопригоден, поскольку разбитые подшипники могут привести в негодность их посадочные места в крышках генератора, а ротор из-за большого поперечного люфта просто-напросто «затрёт» статор. Короче, вместо сравнительно дешевого ремонта по замене подшипников может возникнуть необходимость покупки нового генератора. Замена подшипников является самым популярным видом ремонта генераторов на всех наших сервисных центрах.

Вопрос: Есть подозрение, что у меня на машине периодически появляется перезаряд аккумулятора. Может ли генератор давать перезаряд?

К сожалению, в простейших схемотехнических решениях, до сих пор применяемых в подавляющем числе популярных автомобилей, индикатор заряда АКБ на панели приборов не будет гореть при перезаряде аккумулятора. Если контрольная панель автомобиля не оснащена вольтметром бортовой сети, то о неприятности с перезарядом аккумулятора можно узнать слишком поздно, а именно, по кислотному запаху из батареи, поскольку при перезаряде происходит активное выкипание электролита. Неисправный генератор с «пробитым» реле-регулятором или диодным мостом, как правило, и является источником такой проблемы, но в этом случае перезаряд будет постоянным и никак не периодическим. Однако достаточно часто, особенно на генераторах японских и корейских производителей, применяют схемные решения с обратной связью от АКБ, т..е., с дополнительным проводом от батареи к реле-регулятору генератора, что позволяет более точно поддерживать требуемое напряжение зарядки АКБ. Но вот в случае обрыва этого провода или плохого его контакта в соединительной фишке вполне исправный генератор автоматически «уходит в перезаряд». Скорее всего, именно отсутствие надежного контакта может быть причиной периодического перезаряда АКБ. На любом нашем сервисном центре достаточно квалифицированных мастеров, которые могут выявить и устранить причину перезаряда на любом автомобиле.

Вопрос: Заметил, что генератор на моей машине сильно греется, рукой не дотронуться. Не опасно ли это? Может ли генератор воспламениться?

Любой генератор на любой машине должен нагревается при работе. Наибольшему нагреву подвергается диодный мост, реле-регулятор, статор генератора. Рабочая температура полностью нагруженного генератора может достигать +90 С, а на автомобилях с дизельным двигателем и того больше. Так что «щупать» генератор голыми руками не только бесполезное занятие, но и опасное. На нагрев генератора влияют его месторасположение на двигателе, суммарная мощность подключенных потребителей, особенности вентиляции подкапотного пространства, а также температура окружающей среды. Известные случаи воспламенения генераторов на автомобиле обычно связаны с перегревом места присоединения клеммы силового провода к плюсовому болту генератора из-за плохого контакта — не затянутой гайки, сильным окислением или коррозией и т. д. Как раз в этом месте и может произойти локальный разогрев выше всех допустимых пределов. Причем воспламениться в первую очередь может именно сам силовой провод, и только во-вторую очередь возможно воспламенение пластиковой задней крышки генератора, которые, кстати, встречаются далеко не на всех автомобильных генераторах. Также существует опасность воспламенения генератора в случаях нарушения правил его эксплуатации «переплюсовка» АКБ, короткое замыкание в электроцепи автомобиля, работа генератора сверх номинальной нагрузки и т.д.

Двигатели. Рядный? V-образный? «Оппозит»? — ДРАЙВ

В начале XX века, когда конструкторская мысль бушевала вовсю, двигатель рабочим объёмом 10 л мог быть как одноцилиндровым, так, к примеру, и рядной «восьмёркой». Тогда никого особо не удивляли установленная на автомобиле рядная «шестёрка» объёмом 23 л или семицилиндровый звездообразный мотор с аэроплана...

Однако рост мощностей, оборотов и ожесточенная борьба за снижение себестоимости всё расставили по местам. Простейший одноцилиндровый мотор для автомобилестроителей остался в далёком прошлом. Средний объём цилиндра двигателя обычного автомобиля сейчас — от трёхсот до шестисот кубических сантиметров. Литровая мощность — от 35 л.с./л для безнаддувного дизеля до 100 л.с./л для форсированного бензинового «атмосферника». Для серийных двигателей это оптимум, выходить за рамки которого просто невыгодно.

Очень маленькие цилиндры часто встречаются на японских микролитражках: например, объём рядной «четвёрки» у Subaru R1 — всего 658 см³. Из «европейцев» отличился трёхцилиндровый дизельный Smart — 799 «кубиков». Есть цилиндры-напёрстки и у «корейцев»: трехцилиндровый Matiz — это 796 «кубиков», а четырёхцилиндровый — 995. «Четвёркой» объёмом 1086 см³ оснащаются Hyundai i10 и Kia Picanto. На другом полюсе — конечно же «американцы». Объём V-образной «восьмёрки» купе Chevrolet Corvette Z06 составляет 7011 см³. Хотя японцы, например, оснащали внедорожник Nissan Patrol предыдущего поколения рядной «шестёркой» TB48DE объёмом 4758 «кубиков».

Сегодня двигатель мощностью 100 л.с. в большинстве случаев окажется четырёхцилиндровым, у 200-сильного будет четыре, пять или шесть цилиндров, у 300-сильного — восемь... Но как эти цилиндры расположить? Иными словами — по какой схеме строить многоцилиндровый двигатель?

Простота хуже компактности

О чём болит голова у конструктора? Во-первых, о том, как упростить конструкцию двигателя, чтобы он был дешевле в производстве и легче в обслуживании. Самый простой двигатель — рядный (мы будем обозначать такие моторы индексами R2, R3, R4 и т. д.). Располагаем в ряд нужное количество цилиндров — получаем необходимый рабочий объём.

  • Двигатель R3 (А). Угол между кривошипами — 120°.
  • Добиться равномерности вспышек в двухцилиндровом двигателе (В) можно только при двухтактном цикле.
  • А такой мотор (C), например, стоит на «Оке». Поршни движутся синфазно.

Двух- и трёхцилиндровые двигатели встречаются на автомобилях нечасто, хотя мода на «двухгоршковые» моторчики набирает обороты. Тому способствуют продвинутые системы смесеобразования и применение турбонаддува (как, например, на 85-сильной двухцилиндровой турбоверсии хэтчбека Fiat 500). А вот рядная «четвёрка» попала в самый массовый диапазон рабочего объёма легковых автомобилей — от 1,0 до 2,4 л.

В современных четырёхтактных двухцилиндровых двигателях, вроде турбомотора Фиата 500, проблему вибраций отчасти решает балансирный вал.

Пятицилиндровые рядные моторы появились на серийных автомобилях сравнительно недавно — в середине 70-х годов. Первым был Mercedes-Benz со своими дизельными «пятёрками» — они появились в 1974 году (на модели 300D с кузовом W123). Через два года увидел свет пятицилиндровый двухлитровый бензиновый двигатель Audi. А в конце 80-х годов такие моторы сделали Volvo и FIAT.

Рядные «шестёрки», до недавнего времени столь популярные в Европе, нынче во мгновение ока стали вымирающим видом. А про рядную «восьмёрку» и говорить нечего — с ней практически распрощались еще в 30-х годах. Почему?

Ответ прост. С ростом числа цилиндров двигатель становится длиннее, и это создаёт массу неудобств при компоновке. Например, втиснуть поперёк моторного отсека переднеприводного автомобиля рядную «шестёрку» удавалось в считанных случаях — можно припомнить лишь английский Austin Maxi 2200 середины 60-х годов (тогда конструкторам пришлось спрятать коробку передач под двигателем) и Volvo S80 с суперкомпактной коробкой передач.

Два мотора R3, составленные друг за другом, дают великолепный результат — абсолютно уравновешенную рядную «шестёрку».

Как укоротить рядный мотор? Его можно «распилить» пополам, поставить две половинки рядом друг с другом и заставить работать на один коленвал. Такие моторы, у которых цилиндры расположены в виде латинской буквы V, вдвое короче рядных — наибольшее распространение получили двигатели с углом развала блока 60° и 90°. А V-образный мотор с углом развала блока 180°, в котором цилиндры расположены друг против друга, называют оппозитным (или «боксером» — обозначения В2, В4, В6 и т. д. происходят именно от слова boxer).

Такие моторы сложнее рядных — например, у них две головки цилиндров (каждая со своей прокладкой и коллекторами), больше распредвалов, сложнее схема их привода. А оппозитные двигатели ещё и занимают много места в ширину. Поэтому из компоновочных соображений они применяются довольно редко — производителей «боксеров» можно пересчитать по пальцам.

А как сделать V-образный двигатель еще компактнее? Одно из простых, на первый взгляд, решений — установить угол развала блока менее 60°. Действительно, такие моторы были, но редко — можно вспомнить, например, автомобили Lancia Fulvia 70-х годов с моторами V4, угол развала блока которых составлял 23°. Почему же этим не пользовались все? Дело в том, что перед конструктором двигателя всегда стоит ещё одна проблема — вибрации.

О силах и моментах

Вообще без вибраций поршневой двигатель внутреннего сгорания работать не может — так уж он устроен. Но бороться с ними нужно, и не только для повышения комфорта пассажиров. Сильные неуравновешенные вибрации могут вызвать разрушения деталей мотора — со всеми вылетающими и выпадающими оттуда последствиями...

Отчего возникают вибрации? Во-первых, в некоторых схемах двигателей вспышки в цилиндрах происходят неравномерно. Таких схем конструкторы по возможности избегают или стараются делать массивней маховик — это помогает сгладить пульсации крутящего момента. Во-вторых, при движении поршней вверх-вниз они то разгоняются, то замедляются, из-за чего возникают силы инерции — сродни тем силам, что заставляют пассажиров автомобиля кланяться при торможении или вдавливают их в спинки сидений при разгоне. В-третьих, шатун в двигателе движется вовсе не вверх-вниз, а совершает сложное движение. Да и возвратно-поступательное перемещение поршня от верхней мёртвой точки к нижней тоже нельзя описать простой синусоидой.

  • Силы инерции от двух масс, вращающихся на одном валу поодаль друг от друга, создают свободный момент.
  • В простейшем моторе есть свободные силы инерции, но нет моментов. Цилиндр-то один.

Поэтому среди сил инерции появляются составляющие с удвоенной, утроенной, учетверённой частотой вращения коленвала... Этими так называемыми силами инерции высших порядков, как правило, пренебрегают — они по сравнению с основной силой инерции (которой присвоили первый порядок) очень малы. Исключение составляют силы инерции второго порядка, с которыми приходится считаться. Плюс к этому, пары сил, приложенные на определённом расстоянии, образуют моменты — так происходит, когда в соседних цилиндрах силы инерции направлены в разные стороны.

Что сделать для того, чтобы уравновесить силы и моменты? Во-первых, можно выбрать схему мотора, в которой цилиндры и кривошипы коленчатого вала расположены таким образом, что силы и моменты взаимно уравновесят друг друга — всегда будут равны и направлены в противоположные стороны.

Яркий представитель вымершего племени автомобилей с рядной «восьмёркой» — модель 1930-х годов Alfa Romeo 8C.

А если ни одна из уравновешенных схем не подходит — например, из компоновочных соображений? Тогда можно попытаться по-другому расположить шейки коленвала и применить всякого рода противовесы, создающие силы и моменты, равные по величине, но противоположные по направлению основным уравновешиваемым силам. Иногда это можно сделать, разместив противовесы на коленчатом валу мотора. А иногда — на дополнительных валах, которые называют балансирными валами противовращения. Называются они так потому, что крутятся в другую сторону, нежели коленвал. Но это усложняет и удорожает двигатель.

Чтобы облегчить описание степени уравновешенности разных двигателей, мы подготовили сводную таблицу. Зелёным в ней выделены самоуравновешенные силы и моменты, а красным — свободные (те, что не уравновешены и вырываются на свободу — через опоры силового агрегата проходят на кузов автомобиля).

Степень уравновешенности (зелёная ячейка — уравновешенные силы или моменты, красная — свободные)
1 R2 R2* V2 B2 R3 R4 V4 B4 R5 VR5 R6 V6 VR6 B6 R8 V8 B8 V10 V12 B12
Силы инерции первого порядка
Силы инерции второго порядка
Центробежные силы**
Моменты от сил инерции первого порядка
Моменты от сил инерции второго порядка
Моменты от центробежных сил
* Поршни в противофазе.
** Уравновешиваются противовесами на коленчатом вале.

Что же получается? Из распространённых типов двигателей абсолютно уравновешенных всего два — это рядная и оппозитная «шестёрки». Теперь понимаете, почему BMW и Porsche так крепко держатся за такие моторы? Ну а о причинах, по которым от них отказываются остальные, мы уже упоминали. Теперь рассмотрим поподробнее остальные схемы.

Шестицилиндровый «оппозитник» водяного охлаждения Porsche. С левой и правой сторон блока в целях экономии стоят одинаковые головки, поэтому цепные приводы распредвалов пришлось устраивать и спереди, и сзади.

Уравновешенные и не очень

Из двухцилиндровых двигателей на автомобилях нынче применяется только один — двухцилиндровый рядный мотор с коленчатым валом, у которого кривошипы направлены в одну сторону (такой, например, стоял на отечественной «Оке»). Как видно, этот двигатель по степени уравновешенности похож на одноцилиндровый, поскольку оба поршня движутся вверх и вниз одновременно, в фазе. Для того чтобы уравновесить свободные силы инерции первого порядка, в моторе «Оки» слева и справа от коленвала применялись два вала с противовесами. А как же быть с силами второго порядка? Для того чтобы с ними справиться, пришлось бы добавить ещё два балансирных вала, что на двухцилиндровом моторе, изначально предназначенном для маленьких и дешёвых автомобилей, было бы совершенно неуместным.

Впрочем, это ещё ничего — много двухцилиндровых моторов выпускалось вообще без балансирных валов. Так было, например, на малышках Fiat 500 образца 1957 года. Да, вибрации были, их старались погасить подвеской силового агрегата... Но мотор зато получался простым и дешёвым! Дешевизна двухцилиндровых двигателей соблазняет разработчиков и сегодня: не зря же эту схему использовали создатели самого доступного автомобиля планеты, индийского хэтчбека Tata Nano.

Машин с оппозитной «двойкой» — по экономическим и компоновочным соображениям — было немного. Можно упомянуть, например, французский Citroen 2CV.

Двухцилиндровый двигатель, у которого кривошипы направлены в разные стороны (под углом 180°), можно встретить сегодня только на мотоциклах. Поскольку поршни в нём всегда движутся в противофазе, то он уравновешен лучше. Однако равномерного чередования вспышек в цилиндрах можно добиться только на двухтактных моторах — такие двигатели устанавливались на довоенные DKW и их прямых наследников, пластиковые гэдээровские Трабанты. По причине простоты и дешевизны никаких балансирных валов на них тоже не было, а с возникающими вибрациями просто мирились.

Автомобиль с двухцилиндровым V-образным мотором припоминается только один — отечественный НАМИ-1. А до наших дней этот тип двигателя дожил только на мотоциклах — вспомните американский Harley Davidson и его японских последователей с их V-образными «двойками» во всей хромированной красе. Такой мотор можно уравновесить практически полностью с помощью противовесов на коленчатом валу, но достичь равномерного чередования вспышек невозможно. Хорошо, что байкеры особого внимания на вибрации не обращают...

НАМИ-1 — прототип 1927 года.

Трёхцилиндровый двигатель уравновешен хуже, чем рядная «четвёрка», и поэтому производители трёхцилиндровых моторов — например, Subaru и Daihatsu — стараются оснащать их балансирными валами. В своё время опелевские двигателисты решили отказаться от балансирного вала, разрабатывая трёхцилиндровый мотор семейства Ecotec для Корсы второго поколения — в целях удешевления и уменьшения механических потерь. И трёхцилиндровая Corsa после дебюта в 1996-м была раскритикована немецкими автожурналистами: «По городу на переменных режимах ездить совершенно невозможно».

В самой популярной среди двигателистов рядной «четвёрке» остаётся свободной сила инерции второго порядка. Её можно уравновесить только балансирным валом, вращающимся с удвоенной скоростью. (Вы не забыли — сила инерции второго порядка действует с удвоенной частотой?) А для компенсации момента от балансирного вала придётся ставить ещё один, вращающийся в противоположную сторону. Дорого? Безусловно. Однако моторы с балансирными валами можно встретить на автомобилях Mitsubishi, Saab, Ford, Fiat и самых разных марок концерна Volkswagen.

Пример рядной «четвёрки» с балансирными валами — двухлитровый двигатель Audi. Валы располагаются по обе стороны от коленвала и с удвоенной скоростью вращаются в противоположные стороны. Здесь балансирные валы расположены снизу и соединены зубчатой передачей, а раньше (как, например, на приведённом на картинке внизу двигателе Saab 2.3) их располагали сверху и у каждого был свой шкив цепного привода.

Кстати, оппозитная «четвёрка» уравновешена лучше, чем рядная, — здесь есть только момент от сил инерции второго порядка, который стремится развернуть двигатель вокруг вертикальной оси. Однако и «оппозитник» воздушного охлаждения легендарного «Жука», и знаменитые «боксеры» Subaru обходились и обходятся без балансирных валов.

Subaru из компоновочных соображений предпочитает рядной «четвёрке» оппозитную. Что до вибраций, то силы инерции второго порядка у «боксера» уравновешены, но момент от них всё же остаётся свободным.

У рядных «пятёрок» с уравновешенностью дела обстоят не очень. Силы инерции компенсируются, но вот моменты от этих сил... Во время работы двигателя по блоку постоянно «пробегает» волна изгибающего момента, поэтому блок должен быть весьма жёстким. Однако и Mercedes-Benz, и Audi, и Volvo борются с вибрациями, дорабатывая подвеску силового агрегата или применяя специальные противовесы (как у наддувной «пятёрки» 2.5 TFSI на Audi TT RS). И только фиатовские мотористы применяли балансирный вал, который полностью уравновешивал все моменты.

  • На картинке FIAT JTD от хэтчбека Croma — потомок пятицилиндрового турбодизеля Fiat TD 125 объёмом 2387 см³, образованного путём добавления одного цилиндра к 1,9-литровой «четвёрке» TD 100. Балансирный вал — слева, в нижней части картера.
  • Под каким углом расположить кривошипы коленвала рядной «пятёрки»? 360° делим на пять. .. Правильно — 72°!

Кстати, практически все «пятёрки» образованы путём прибавления ещё одного цилиндра к четырёхцилиндровому двигателю — как кубики в конструкторе. Делают это для того, чтобы с минимальными производственными и конструкторскими затратами получить более мощные моторы. При этом всю начинку, включая поршни, шатуны, клапаны и т. д., можно взять от «четвёрки». Понадобятся иные блок и головка цилиндров и, само собой, коленчатый вал, кривошипы которого должны быть расположены под углом в 72°.

О шестицилиндровых моторах — мечте с точки зрения уравновешенности — мы уже упоминали. А вот в моторах V6, которые вытесняют рядные «шестёрки», ситуация с уравновешенностью такая же, как у «трёшки», то есть не ахти. Поэтому, например, балансирным валом в развале блока цилиндров был оснащён самый первый двигатель V6 фирмы Mercedes-Benz — заслуженный М112 с тремя клапанами на цилиндр. У трёхлитровой «шестёрки» концерна PSA вал находился в одной из головок блока. На других моторах того времени инженеры пытались не усложнять конструкцию и старались свести уровень вибраций к минимуму за счёт усовершенствованной подвески силового агрегата и хитроумного смещённого расположения шатунных шеек коленчатого вала (как, например, на Audi V6).

  • В моторе V6 с углом развала блока 90° сдвоенные кривошипы расположены под углом 120°. А в моторах с развалом 60° каждый шатун приходится устанавливать на своём кривошипе.
  • Для уравновешивания свободного момента от сил второго порядка мотору V6 90° необходим один балансирный вал (показан стрелкой). В двигателе Citroen 3.0 V6 он был установлен в одной из головок блока.

У новейших мерседесовских двигателей V6 угол развала блока сократился до 60°, в результате чего необходимость в балансирном вале отпала.

Добавим сюда ещё одно замечание — в моторах V6 с развалом в 90° не обеспечивается равномерное чередование вспышек в цилиндрах. Возникающая неравномерность хода может компенсироваться за счёт утяжелённого маховика, но лишь отчасти. Вот вам и ещё один источник вибраций...

Двигатели V8 с углом развала цилиндров в 90° и коленвалом, кривошипы которых располагаются в двух взаимно перпендикулярных плоскостях, весьма неплохо уравновешены. В таком моторе можно обеспечить равномерное чередование вспышек, что тоже работает на плавность хода. Остаются неуравновешенными два момента, которые можно полностью утихомирить с помощью двух противовесов на коленчатом валу — на щеках крайних цилиндров. Понимаете, почему американцы раньше других прочувствовали всю прелесть V-образных моторов? Вибрации и тряски в своих автомобилях они очень не любят...

Двигатель V8: и развал блока, и угол между кривошипами — 90°.

Напоследок можно поговорить о схемах необычных. Сначала вспомнить о моторах V4. Таких было немного — европейский Ford образца 60-х годов (который стоял на автомобилях Ford Taunus, Capri и Saab 96) да чудо-двигатель отечественного «Запорожца». Здесь не обошлось без уравновешивающего вала для момента от сил инерции первого порядка. Впрочем, конструкторы вышеупомянутых автомобилей выбирали эту схему из условий компактности и отчасти экономии, а не за хорошую уравновешенность.

  • Ford и ЗАЗ выбрали экзотику: мотор V4, в котором и угол развала блока, и угол между кривошипами составляют 90°.
  • Угол развала цилиндров моторов V2 колеблется от 25° до 90°.

А что насчёт V-образных «десяток»? Как можно видеть, степень уравновешенности таких моторов точно такая же, как и у моторов R5. Впрочем, конструкторы прежних моторов Формулы-1 или монстров Dodge Viper и Dodge RAM, где стоят двигатели V10, о вибрациях думали далеко не в первую очередь.

Как жаль, что Viper и его коллосальный V10 — уже история.

Двигателями V10 отметилась целая череда знаковых машин: BMW M5, Audi S6 и S8, а также RS6 с наддувной «десяткой». Не говоря уже об автомобилях Lamborghini. Наконец, Lexus LFA тоже оснащается двигателем V10.

Ну а прочие схемы легко свести к предыдущим. Например, оппозитная «восьмёрка» (пример применения — гоночные болиды Porsche 917) — это две «четвёрки», работающие на один коленвал. А V-образный и оппозитный двенадцатицилиндровые двигатели можно свести к двум рядным «шестёркам».

VR6, VR5, W12...

Помните, мы упоминали о V-образных моторах с малым углом развала блока — как на Лянчах? Раньше таких схем избегали — уравновесить их сложнее, чем моторы с развалом в 60° или 90°, а выигрыш в компактности тогда ценили не так...

Но теперь ситуация изменилась. Во-первых, повсеместно применяются гидроопоры силового агрегата, которые значительно ослабляют вибрации. Во-вторых, пространство под капотом нынче на вес золота. Ведь кто раньше мог себе представить скромный хэтчбек с 2,8-литровым мотором? А теперь — пожалуйста! Всё началось с Фольксвагена Golf VR6 третьего поколения.

Знаменитый фольксвагеновский двигатель VR6, «V-образно-рядный» мотор (об этом и говорит обозначение VR), стал дальнейшим развитием V-образных двигателей с малым углом развала блока. Цилиндры этого мотора разведены на ещё меньший угол, чем на Лянчах, — всего на 15°. Угол настолько мал, что такой мотор называют ещё «смещённо-рядным». Гениальное решение — «шестёрка» 2. 8 компактнее, чем обычный мотор V6, да ещё и имеет одну головку блока! Потом появился двигатель VR5 — это VR6, от которого «отрезали» один цилиндр. После этого мотористы концерна Volkswagen вообще словно с цепи сорвались.

Двигатель VR5 2.3 конструкторы Фольксвагена получили, отняв один цилиндр от мотора VR6. Угол развала компактного блока — 15°, все пять цилиндров укрыты одной головкой блока.

Они придумали суперкомпактный двигатель W12, который дебютировал в 1998 году на концепт-каре W12 Roadster. Это два двигателя VR6, установленные под углом 72° на одном коленвале. Но прежде в серию пошёл мотор W8, которым оснащалась топ-модель седана Passat. Там тоже два мотора VR6, от которых «отрезано» по два цилиндра и которые тоже объединены в одном блоке на одном коленвале. Когда-то в Вольфсбурге подумывали и о восемнадцатицилиндровом двигателе — но в итоге остановились на W16 с четырьмя турбокомпрессорами, который разгоняет Bugatti Veyron до 431 км/ч.

Супермотор W12, показанный на концепте имени себя, приводит в движение представительские модели фирм Audi, Volkswagen и Bentley. На фото хорошо видно шахматное расположение цилиндров пары блоков, объединённых в одной отливке под углом 72°. Длина 420-сильного мотора — всего 51 см, ширина — 70 см.

Почему же таких моторов не было раньше? Взгляните, к примеру, на коленвал двигателя W12 — такое технологу и в страшном сне не приснится! Создателям новых схем должен помогать компьютер. Чтобы просчитать все варианты угла развала блока, расположения шатунных шеек, порядка вспышек в цилиндрах и выбрать самый уравновешенный, без помощи вычислительных мощностей обойтись очень сложно.

Теория и практика

Как видно, при выборе схемы силового агрегата конструкторы ставят во главу угла вовсе не степень уравновешенности. Главное — это удачно вписать в моторный отсек такой двигатель, который будет обладать наилучшим соотношением массы, размеров и мощности. Потом, двигатели сейчас всё чаще строятся по модульному принципу. Говоря упрощённо, на одной поршневой группе можно построить любой мотор — и трёхцилиндровый, и W12. Вслед за Фольксвагеном на модульные конструкции переходит всё больше производителей. Новейшая линейка моторов Mercedes — тому отличное подтверждение.

А вибрации... Во-первых, следует различать теоретическую и действительную уравновешенность двигателя. Если коленчатый вал в сборе с маховиком не отбалансирован, а поршни и шатуны заметно отличаются по массе, то трясти будет даже рядную «шестёрку». А потом, действительная уравновешенность всегда значительно хуже теоретической — по причинам отклонения деталей от номинальных размеров и из-за деформации узлов под нагрузкой. Так что вибрации «прорываются» из двигателя наружу при любой схеме. Поэтому автомобильные инженеры и уделяют такое внимание подвеске силового агрегата. На самом деле конструкция и расположение опор двигателя — не менее важный фактор, чем степень уравновешенности самого мотора. ..

Материал адаптирован к публикации с разрешения ООО «Газета «Авторевю». Все права на перепечатку принадлежат Авторевю.

Шаговый двигатель от старого принтера как генератор

Разобрав старый принтер мне достался вот такой красавец:

Что это? Шаговый двигатель, двигателей такого типа полно в принтерах и CD/DVD’ромах и в старых флоппиках.

Для чего он может пригодится спросите Вы? Из них выходят отличные генераторы переменного тока  (спасибо Тесле), и без проблем переменный ток можно преобразовать в постоянный. А что самое интересное — переменний ток при выпрямлении можно умножать при помощи умножителя напряжения, о них расскажет ChipiDip:

Собрал по классической схеме удвоитель напряжения и подключил его к одной фазе двигателя:

Конденсаторов на 10 000 мкФ и лихвой хватит для роботы с моим шаговиком.

Диоды Шоттки имеют немного высший КПД нежели обычные кремниевые, потому я остановился на них. Мои диоды рассчитанные на ток 5 Ампер, так что спалить их не боюсь.

Крутнул несколько раз от руки и…

Попробуем сделать искру:

Накопившейся энергии в конденсаторах хватило даже на две.

Напряжение ушло выше 20-ти вольт, но не следует думать что выше 20 вольт это уже много, как видим энергия накопившаяся в конденсаторах несильно раскрутила компьютерный кулер. Как учили в школе, мощность (измеряется в Ваттах) это напряжение умножено на ток, ток же, небольшой, что можно будет увидеть на видео ниже:

Может от руки полученная мощность и небольшая но кулер крутится  немного быстрей ежели через обычный мостовой выпрямитель, да и можно же собрать ещё один удвоитель и подключить его к второй свободной фазе и подсоединяя последовательно или параллельно можно удваивать ток или же напряжение.

С уважением HWman.

Мой канал на ютюбе, подписывайтесь, дальше будет интересней.

Изготовление мини-ветрогенератора из кулера своими руками: материалы, инструкция, советы

Компьютерный «системник», пылящийся на балконе, заслуживает более достойного применения. Например, очень интересны возможности старого кулера, еще недавно охлаждавшего процессор. Немного смекалки и терпения – и на его основе можно изготовить мини ветрогенератор своими руками. Конечно, для электроснабжения всего дома его не хватит, но для питания небольших приборов или устройств – вполне. Обычный ветер скоростью 12км/ч легко заставит генератор давать около 2В для небольшого радиоприемника, лампы или часового механизма.

Почему выгодно сделать мини ветрогенератор из кулера от компьютера

Здесь обязательно стоит отметить следующие преимущества:

  • устройство полностью собрано, и вам не придется возиться с мелкими деталями;
  • кулер по умолчанию адаптирован на вращение, и в его дополнительной настройке нет необходимости;
  • вы экономите на покупке дополнительных деталей;
  • достать старый кулер от компьютера не составляет никакого труда, и вы сможете сразу приступить к сборке устройства.

Перечень необходимых материалов

Помимо старого кулера сравнительно крупных размеров, для работы потребуется:

  • плотная пластиковая бутылка;
  • провод, рассчитанный на работу под слабым напряжением;
  • небольшой деревянный брусок 1,5 дюйма диаметром;
  • металлические трубки, входящие одна в другую;
  • эпоксидный и суперклей;
  • ненужный диск CD;
  • затягивающиеся хомуты.

Все перечисленное можно легко найти в домашней кладовой или приобрести на ближайшем рынке.

Собираем ветрогенератор своими руками из кулера: последовательность работы

Чтобы быстро изготовить работоспособное устройство и не тратить время на его исправление и ремонт, постройте сборку генератора в такой последовательности:

  • Компьютерный кулер «заточен» под свои основные задачи. Поэтому для его волшебной трансформации в генератор лишние детали необходимо удалить. Снимите резиновый уплотнитель и скрытое под ним стопорное кольцо. Так удастся снять «лишние» лопасти кулера, поскольку они будут заменены более крупными.
  • На медных катушках обмотки кулера найдите места соединения проводов. Это коннекторы. У одного из них два провода, у других – по одному. К последним нужно добавить по одному дополнительному проводу, аккуратно припаяв их к соединению.
  • Переменный ток, который будет образовываться в новом генераторе, должен быть преобразован в постоянный. Для этого потребуется 4 диода. Их попарно обрезают до расстояния в 1см: одну пару – у края с черными штрихами, другую – на противоположной стороне. Длинные концы загибаются таким образом, чтобы форма диода напоминала букву П. Обрезанные диоды припаиваются. Одновременно к вентилятору подсоединяют провод нужной длины.
  • Теперь можно протестировать устройство. Для этого потребуется бытовой тестер или светодиоды. Подсоедините их к кулеру, раскрутите его и посмотрите, удается ли ему выработать электрическую энергию.

После того как электрическая часть полностью готова, можно приступать к изготовлению лопастей мини ветрогенератора:

  1. Основа конструкции лопастей – плотный пластик чистой бутылки из-под воды, шампуня или бытовой химии. После обрезки дна и верха с крышкой получившийся цилиндр обрезается вдоль.
  2. На бумаге рисуем чертеж лопасти. Ее длина зависит от длины пластикового цилиндра, полученного из бутылки. На конце лопасти для последующего удобного соединения вырезается угол 120 градусов.
  3. При вырезании лопастей обратите внимание на их полное совпадение по размерам. В противном случае, необходимо подровнять элементы, чтобы они работали в одинаковом режиме.

На следующем этапе лопасти соединяют с кулером. К его пластиковой стороне с помощью суперклея поочередно приклеивают детали. Изогнутая форма лопастей обеспечит отличную аэродинамику и эффективность вращения. Поэтому выравнивать детали не стоит. В качестве опоры готовой конструкции с лопастями будет служить деревянный брусок.

Для изготовления хвостовика следует использовать компакт-диск. В бруске делается сквозное отверстие по диаметру металлической трубки. Если отверстие получилось больше, его можно заделать эпоксидным клеем. Также с помощью клеевого состава можно обработать места пайки проводов и точку соединения бруса и кулера. Хвостовик из диска вставляется в небольшой пропил на конце бруска и затем фиксируется тонкими шурупами через сквозные отверстия в месте пропила.

На завершающем этапе монтажа металлическую трубку большего диаметра вставляют в меньшую, уже присоединенную к конструкции генератора. В качестве подшипника, обеспечивающего вращение внутренней трубки можно использовать фторопласт.

Чтобы убедиться в работоспособности мини ветрогенератора, сделанного своими руками из моторчика, проведите заключительное тестирование. Остается найти подходящее место для нового устройства и выполнить его монтаж.

Двигатели постоянного тока

в качестве генераторов | New Equipment Digest

Двигатели постоянного тока

maxon очень эффективны, это также верно при работе в качестве генераторов. Основные вычисления между скоростью и напряжением, а также током и крутящим моментом очень просты. Вот несколько правил для успешного выбора.

Напряжение постоянного или переменного тока?

Правило №1: Для генерации постоянного напряжения выберите щеточный двигатель постоянного тока или используйте бесщеточный двигатель EC (BLDC) с выпрямителем напряжения. Для генерации переменного напряжения выберите бесщеточный ЕС-двигатель и подключите только 2 фазы. На бесщеточных двигателях датчики Холла не нужны.

Постоянная скорости кн

Многие генераторы работают со скоростью 1000 об / мин или ниже. Это довольно низкая скорость для небольших двигателей. Для генерации 10 В или более при 1000 об / мин требуется постоянная скорости всего 100 об / мин / В или меньше. Такие обмотки сложно найти в ассортименте maxon. На более крупных двигателях есть только несколько обмоток с высоким сопротивлением, которые удовлетворяют этому требованию. Меньшие двигатели имеют более высокие константы скорости.

Таблица 1 показывает выбор двигателей с постоянной низкой скоростью (или высокой постоянной генератора = генерируемое напряжение на скорость).Обычно это обмотка двигателя с наибольшим сопротивлением, что приводит к постоянной скорости менее 100 об / мин / В.

Правило № 2: Без учета нагрузки обмотка должна иметь константу скорости узлов или меньше. В качестве альтернативы скорость двигателя может быть увеличена за счет использования редуктора (см. Ниже).

Сопротивление

Правило № 2 требует двигателей с высокой постоянной генератора. К сожалению, и у этих обмоток самое высокое сопротивление.Высокое сопротивление снижает выходное напряжение под нагрузкой, и выходное напряжение становится очень чувствительным к току нагрузки.

Правило № 3: Для стабильного выходного напряжения в определенном диапазоне нагрузок выбирайте двигатель большего размера, у которого сопротивление ниже даже на двигателях с высокой постоянной генератора.

Двигатели с высоким крутящим моментом EC-i 40 очень интересны с этой точки зрения.

Ограничения мощности

Не выбирайте мотор-генератор только по соображениям мощности.Чтобы выполнить требования по крутящему моменту, вам может понадобиться двигатель с гораздо большей мощностью, чем генерируемая мощность; в частности, если скорость генератора довольно низкая по сравнению с типичными скоростями двигателя.

Ограничения по крутящему моменту и скорости

Величина крутящего момента на генераторе определяет размер и тип мотор-генератора. Выберите тип двигателя с постоянным крутящим моментом выше, чем крутящий момент генератора. При расчете крутящего момента или текущей нагрузки учитывайте тип работы.Будет ли генератор работать непрерывно в течение длительных периодов времени, или в прерывистых рабочих циклах, или только в течение коротких интервалов? Соответственно, следует выбирать типоразмер двигателя с достаточным постоянным крутящим моментом или током. Также соблюдайте максимальную скорость двигателя. Однако из-за обычно низких скоростей это почти не проблема.

Ограничения по току и напряжению

Наиболее подходящая обмотка для данного типа двигателя определяется требованиями по току и генерируемому напряжению.Выберите обмотку, способную генерировать необходимое напряжение U даже под нагрузкой. Предполагая фиксированную частоту вращения генератора n, нам требуется генерируемое напряжение обмотки Ut, которое больше, чем U

.

Без учета нагрузки выберите постоянную скорости в соответствии с Правилом № 2, т.е. обмотку с достаточно высоким сопротивлением. Поскольку ток нагрузки уменьшается с увеличением сопротивления, убедитесь, что постоянный ток по-прежнему достаточно велик.

U t = n / k n - R mot · I L > U

График довольно хорошо показывает амбивалентные эффекты различных обмоток.

  • Чем выше сопротивление обмотки, тем выше генерируемое (без нагрузки) напряжение.
  • Однако чем выше сопротивление обмотки, тем более чувствительным становится генерируемое напряжение к изменениям тока нагрузки.

Эти противоречивые эффекты могут быть устранены до некоторой степени путем выбора более крупных двигателей, которые демонстрируют более низкое сопротивление для той же постоянной генератора (в соответствии с Правилом № 3).

Вольт-амперные линии различных обмоток RE 40 со щетками из драгоценных металлов при 500 об / мин. Обратите внимание на разные наклоны каждой обмотки.

Комбинации мотор-редукторов

Правило № 4: Используйте редукторы для увеличения очень низких скоростей. Однако редукторы maxon не очень хороши в приводе от выходного вала. Используйте редукторы с обратным приводом, то есть планетарные редукторы до двух ступеней или цилиндрические редукторы. (Или специально разработанные редукторы).

Причиной использования комбинаций мотор-редуктор является очень медленный приводной механизм в генераторах; е.г. приводится в действие ветряной или водяной турбиной или даже вручную. Несколько наблюдений и рекомендаций:

  • В таких случаях необходимо приводить редукторы в обратном направлении. Однако редукторы maxon на самом деле не предназначены для реверсивной работы, и их эффективность невысока.
  • Высокие редукторы (3 ступени и выше) не допускают обратного хода; т.е. они не будут вращаться при приводе от выхода с максимально допустимым крутящим моментом. Вы можете использовать одно- или двухступенчатые планетарные редукторы; ими можно управлять с выхода.
  • Вместо планетарных редукторов используйте прямозубые шестерни. Цилиндрические зубчатые передачи легче приводить в движение, и эффективность обратного хода в целом выше.

Особый случай: двигатель постоянного тока в качестве тахометра постоянного тока

Правило № 5: Для тахометров постоянного тока используйте двигатели постоянного тока с щетками из драгоценных металлов, которые лучше подходят для малых токов. Выберите обмотку в соответствии с требуемым напряжением тахометра и диапазоном скоростей в вашем приложении. Не беспокойтесь о сопротивлении обмотки, просто убедитесь, что сопротивление нагрузки составляет не менее кОм , чтобы токи были небольшими.

Как сделать простой электродвигатель | Научный проект

  • D аккумулятор
  • Изолированный провод 22G
  • 2 большие глаза, длинные металлические швейные иглы (глаза должны быть достаточно большими, чтобы пропустить проволоку)
  • Глина для лепки
  • Изолента
  • Нож хобби
  • Маленький круглый магнит
  • Тонкий маркер
  1. Начиная с центра проволоки, плотно и аккуратно оберните проволоку вокруг маркера 30 раз.
  2. Сдвиньте сделанную катушку с маркера.
  3. Оберните каждый свободный конец провода вокруг катушки несколько раз, чтобы удерживать их вместе, затем направьте провода в сторону от петли, как показано:

Что это? Какова его цель?

  1. Попросите взрослого использовать нож для хобби, чтобы помочь вам удалить верхнюю половину изоляции провода с каждого свободного конца катушки. Оголенный провод должен быть направлен в одном направлении с обеих сторон. Как вы думаете, почему половина провода должна оставаться изолированной?
  1. Проденьте каждый свободный конец катушки проволоки через большое игольное ушко. Старайтесь, чтобы катушка была как можно более прямой, не загибая концы проволоки.
  1. Положите аккумулятор D боком на ровную поверхность.
  2. Приклейте немного пластилина с обеих сторон аккумулятора, чтобы он не скатился.
  3. Возьмите 2 маленьких шарика пластилина и прикройте острые концы иглы.
  4. Поместите иглы вертикально рядом с выводами каждой батареи так, чтобы сторона каждой иглы касалась одного вывода батареи.
  1. Используйте изоленту, чтобы прикрепить иглы к концам батареи. Ваша катушка должна висеть над батареей.
  2. Прикрепите небольшой магнит к боковой стороне батареи так, чтобы он располагался по центру под катушкой.
  1. Прокрутите катушку. Что происходит? Что происходит, когда вы вращаете катушку в другом направлении? Что произойдет с большим магнитом? Батарея побольше? Более толстая проволока?

Двигатель будет продолжать вращаться, если его толкнуть в правильном направлении.Мотор не вращается, если первоначальный толчок происходит в противоположном направлении.

Металл, иглы и проволока образовали замкнутый контур , контур , который может проводить ток. Ток течет от отрицательной клеммы батареи через цепь к положительной клемме батареи. Ток в замкнутом контуре также создает собственное магнитное поле , которое вы можете определить с помощью «правила правой руки». Поднимая правой рукой знак «большой палец вверх», большой палец указывает в направлении тока, а изгиб пальцев показывает, в какую сторону ориентировано магнитное поле.

В нашем случае ток проходит через созданную вами катушку, которая называется якорем двигателя. Этот ток индуцирует магнитное поле в катушке, что помогает объяснить, почему катушка вращается.

Магниты имеют два полюса, северный и южный. Взаимодействия север-юг держатся вместе, а взаимодействия север-север и юг-юг отталкивают друг друга. Поскольку магнитное поле, создаваемое током в проводе, не перпендикулярно магниту, прикрепленному лентой к батарее, по крайней мере, некоторая часть магнитного поля провода будет отталкиваться и заставит катушку продолжать вращаться.

Так почему нам нужно было снимать изоляцию только с одной стороны каждого провода? Нам нужен способ периодически размыкать цепь, чтобы она включалась и выключалась синхронно с вращением катушки. В противном случае магнитное поле медной катушки выровнялось бы с магнитным полем магнита и перестанет двигаться, потому что оба поля будут притягиваться друг к другу. Способ, которым мы настраиваем наш двигатель, делает так, что всякий раз, когда ток проходит через катушку (придавая ей магнитное поле), катушка находится в хорошем положении, чтобы ее оттолкнуло магнитное поле неподвижного магнита.Когда катушка не отталкивается активно (в те доли секунды, когда цепь отключена), импульс переносит ее, пока она не окажется в правильном положении, чтобы замкнуть цепь, вызвать новое магнитное поле и оттолкнуться неподвижным снова магнит.

После движения катушка может продолжать вращаться, пока батарея не разрядится. Причина того, что магнит вращается только в одном направлении, заключается в том, что вращение в неправильном направлении не заставит магнитные поля отталкивать друг друга, а притягиваться.

Заявление об ограничении ответственности и меры предосторожности

Education. com предоставляет идеи проекта Science Fair для информационных целей. только для целей. Education.com не дает никаких гарантий или заверений относительно идей проектов Science Fair и не несет ответственности за любые убытки или ущерб, прямо или косвенно вызванные использованием вами таких Информация. Получая доступ к идеям проектов Science Fair, вы отказываетесь от отказаться от любых претензий к Education.com, которые возникают из-за этого. Кроме того, ваш доступ к веб-сайту Education.com и идеям проектов Science Fair покрывается Политика конфиденциальности Education.com и Условия использования сайта, которые включают ограничения об ответственности Education.com.

Настоящим дается предупреждение, что не все идеи проекта подходят для всех индивидуально или при любых обстоятельствах. Реализация идеи любого научного проекта должны проводиться только в соответствующих условиях и с соответствующими родительскими или другой надзор.Прочтите и соблюдайте правила техники безопасности всех Ответственность за использование материалов в проекте лежит на каждом отдельном человеке. Для Для получения дополнительной информации обратитесь к справочнику по научной безопасности вашего штата.

Разобранный двигатель: Наука об электричестве и магнетизме

Ток протекает через батарею, алюминиевую фольгу и скрепки в проволочную катушку, создавая электромагнит. Одна сторона катушки становится северным полюсом; другой - южный полюс.Постоянный магнит притягивает свой противоположный полюс на катушке и отталкивает такой же полюс, заставляя катушку вращаться.

Другой способ описать работу двигателя - сказать, что постоянные магниты воздействуют на электрические токи, протекающие через петлю из проволоки. Когда проволочная петля находится в вертикальной плоскости, силы на верхнем и нижнем проводах петли будут противоположными. Эти противоположно направленные силы создают скручивающую силу или крутящий момент на проволочной петле, которая заставляет ее вращаться.

Почему так важно покрасить половину одного выступающего провода в черный цвет? Предположим, что постоянные магниты установлены так, чтобы их северные полюса были обращены вверх. Северный полюс постоянного магнита отталкивает северный полюс петлевого электромагнита и притягивает южный полюс. Но как только южный полюс петлевого электромагнита окажется рядом с северным полюсом постоянного магнита, он останется там. Любое нажатие на петлю просто заставит ее качаться около этого положения равновесия.

Закрашивая половину одного конца черным, вы предотвращаете протекание тока в течение половины каждого вращения. Магнитное поле петлевого электромагнита выключается на этот полувращение. Когда южный полюс петлевого электромагнита приближается к постоянному магниту, краска отключает электрический ток. Инерция вращающейся катушки переносит ее на половину оборота мимо изоляционной краски. Когда электрический ток снова начинает течь, скручивающая сила остается в том же направлении, что и раньше.Катушка продолжает вращаться в том же направлении.

Вы можете поэкспериментировать с этим устройством, переключив клеммы на батарее, добавив батарею или перевернув магниты. Попробуйте добавить больше магнитов или измените положение магнитов. Посмотри, что получится!

Создайте свою собственную мини-ветряную турбину из деталей принтера

Вот небольшой забавный проект, который может принести в дом чистую и тихую природу энергии ветра.

Для всех домашних мастеров, родителей и учителей, которые хотят познакомиться с возобновляемыми источниками энергии, создание ветряной микротурбины может стать отличным небольшим проектом.Он не настолько велик, чтобы приводить в действие что-либо большое, но его, безусловно, можно использовать в качестве демонстрации энергии ветра, и, возможно, его даже стоит построить в качестве мини-зарядной станции для портативной электроники или небольших аксессуаров для наружного освещения.

Зачем строить мини-ветровую турбину


Я большой поклонник небольших солнечных зарядных устройств для зарядки гаджетов и приспособлений, и хотя я знаю, что можно построить свою собственную версию этих портативных электростанций, я еще не видел хороших планов по созданию такой, использует переработанные или переработанные материалы, так что я этого еще не делал. Я также большой поклонник (каламбур) энергии ветра и построил с моими детьми пару действительно крошечных ветряных генераторов в качестве проекта домашнего обучения (см. Веб-сайт KidWind для некоторых замечательных ресурсов), но мы не построили ни одного тем не менее, он достаточно большой, чтобы обеспечить достаточно энергии для практических целей. Но это может скоро измениться, потому что я наткнулся на эти инструкции из ScienceTubeToday, которые, похоже, именно то, что прописал врач по чистой энергии.

О материалах и инструкциях


Для генератора инструкции требуют использования так называемого шагового двигателя (который немного отличается от стандартного электродвигателя постоянного тока), который можно извлечь из старого струйного принтера и который считается гораздо лучшим выбором, чем просто используя электродвигатель постоянного тока в качестве генератора.Автор говорит (в комментариях к видео), что эти шаговые двигатели очень хороши «по сравнению с двигателем постоянного тока того же размера, поскольку они могут вырабатывать электричество» на очень низких скоростях, скажем, 200 об / мин, тогда как двигателю постоянного тока потребуются тысячи об / мин. . "

Подставка сделана из трубы ПВХ, что не совсем экологически чистый продукт (но это предмет, который легко доступен или который у вас уже может быть), но я думаю, что вы могли бы легко построить свою собственную подставку из других перепрофилированных материалов, которые сделает этот проект более экологичным.

Видеоинструкции полностью лишены повествования, что делает его на удивление эффективным в передаче информации (хотя вам может потребоваться приостановить его, чтобы записать заметки), а фоновая музыка на нем, ну, немного отличается от вашего обычного учебного видео. , но опять же, я думаю, что это добавляет, а не вычитает из содержания. Посмотрите это ниже:

В этой версии используется пропеллер модели самолета, которого у большинства из нас, вероятно, нет, но в сети есть изрядное количество планов и диаграмм для лопастей турбины, сделанных своими руками, поэтому вполне возможно создать свой собственный (и который может добавить к образовательному характеру этого проекта). Согласно видео, при использовании автомобильной розетки 12 В в паре с адаптером для зарядки эта ветряная турбина будет выдавать стабильный выход 5 В 1 А на ветру (что отлично подходит для зарядки нашей довольно деликатной электроники), но ее также можно использовать без зарядный адаптер, и в этом случае он выдает гораздо более высокое напряжение (что может быть преимуществом при зарядке более крупной батареи), но с риском иметь переменную мощность. Ваш пробег может отличаться, поэтому вам нужно дважды проверить выход рабочего устройства, прежде чем подключать к нему свой гаджет.

Еще несколько подробностей о проекте, а также инструкции для некоторых других проектов в области электричества и науки своими руками можно найти на ScienceTubeToday.

DIY Генератор для производства 120 В переменного тока мощностью 500 Вт

Резюме: Более 90% мировой энергии вырабатывается с помощью электромагнитов, основанных на законе электромагнитной индукции Фарадея. Было открыто много новых технологий, которые привели к резкому изменению восприятия электрической энергии, но в то же время существует неправильное представление о свободной энергии.Свободная энергия имеет размеры энергии, и ее величина определяется состоянием системы. Это обширное свойство, которое означает, что его величина зависит от количества вещества в данном термодинамическом состоянии. Энергия становится бесплатной только в тот момент, когда нам не нужно за нее платить. Но используя магнитную силу, которая помогает обеспечить вращательное движение ротору для выработки энергии с помощью динамо-машины. В этом проекте я разработал небольшую систему для генерации переменного тока 120 В с использованием двигателя постоянного тока.Используя эту систему, мы можем управлять нашей небольшой бытовой техникой.

Бидют Бикаш Бора

Описание: Энергия может быть преобразована из одной формы в другую. Электроэнергия, которую мы получаем от солнечной батареи, ветряной мельницы, приливной, геотермальной, гидравлической и т. Д., Является бесплатной только после внесения в нее некоторого начального капитала. Идея использования магнитов для выработки электроэнергии существует у нас очень давно. Здесь я использую один двигатель постоянного тока 12 В 300 об / мин в качестве динамо-машины, один маленький двигатель постоянного тока 3 В 100 об / мин используется для вращения двигателя 12 В.Я использовал 2 батарейки размера AAA, чтобы обеспечить питание маленького DC

. DIY Генератор для производства 120 В переменного тока с двигателем 500 Вт

, выходная мощность батареи будет 3 В постоянного тока. После этого я механически соединил вал двигателя таким образом, что если маленький двигатель постоянного тока вращается, то двигатель 12 В постоянного тока тоже будет вращаться. Теперь, используя мультиметр, мы проверим напряжение на наших клеммах динамо (например, двигатель 12 В постоянного тока), мы получим около 12 В постоянного тока на выходе. После этого это напряжение будет использоваться в качестве входного напряжения для платы преобразователя постоянного тока в переменный (RS7642 / 1), я извлек эту плату из инвертора mini 3 CFL, эта плата может производить около 120 В переменного тока с мощностью около 500 Вт, теперь мы проверим выходного переменного напряжения на выходном зажиме платы, мы выведем два провода из выходного зажима и подключим к нему один патрон, чтобы накалить светодиодную лампочку. В зависимости от требований, пользователь может подключать различное оборудование, но общая мощность не должна превышать 500 Вт. Как я уже упоминал ранее, двигатель 12 В я использовал в качестве динамо-машины, но некоторые читатели могут подумать, как можно использовать двигатель в качестве динамо-машины. Я должен сказать вам, что один двигатель постоянного тока вращается, когда вы подаете напряжение на его входную клемму, но если вы вращаете вал двигателя рукой или с помощью любого внешнего оборудования, кроме входной клеммы двигателя, вы получите напряжение около 12 В, это напряжение меняется в зависимости от свойств двигателя, используя эту небольшую идею, я разработал эту систему.Таким образом, мы можем генерировать переменное напряжение из двух небольших батареек размера AAA, эти две батареи будут стоить около 20 рупий. Только. Если у вас возникнут какие-либо проблемы с подключением, читатели могут перейти на мой канал YouTube и найти видео, в противном случае дайте мне знать через любую платформу, такую ​​как Gmail или YouTube.

Компонент, используемый в проекте :

  1. Двигатель постоянного тока 12 В, 300 об / мин - 1 шт.
  2. Малый двигатель постоянного тока 3-6 В 100 об / мин - 1 шт.
  3. Преобразователь 12 В постоянного тока в 120 В переменного тока Плата (RS7642 / 1) -1шт.
  4. Бытовой LED Лампочка-1нос.
  5. Держатель лампы-1нос.
  6. Батарейка AAA -2 шт.

Электрогенератор | инструмент | Британника

Полная статья

Электрогенератор , также называемый динамо , любая машина, преобразующая механическую энергию в электричество для передачи и распределения по линиям электропередач бытовым, коммерческим и промышленным потребителям. Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость. Механическая энергия может поступать из ряда источников: гидротурбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, получаемый за счет тепла сгорания ископаемого топлива или ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели. Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Почти все генераторы, используемые для электроснабжения сетей, вырабатывают переменный ток, полярность которого меняется на фиксированную частоту (обычно 50 или 60 циклов или двойное изменение полярности в секунду). Поскольку несколько генераторов подключены к электросети, они должны работать на одной и той же частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основная причина выбора переменного тока для электрических сетей заключается в том, что его постоянное изменение во времени позволяет использовать трансформаторы. Эти устройства преобразуют электрическую энергию при любом напряжении и токе, которые она генерирует, в высокое напряжение и низкий ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд). Конкретная используемая форма переменного тока представляет собой синусоидальную волну, которая имеет форму, показанную на рисунке 1. Это было выбрано, потому что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть добавлены или вычтены и имеют такая же форма возникает в результате.В идеале все напряжения и токи должны иметь синусоидальную форму. Синхронный генератор предназначен для получения этой формы с максимальной точностью. Это станет очевидным, когда ниже будут описаны основные компоненты и характеристики такого генератора.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Ротор

Элементарный синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем.Магнитное поле создается проводниками или катушками, намотанными в пазы, вырезанные на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения. Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемого в воздушном зазоре к статору, приблизительно синусоидально распределяется по периферии ротора. На рисунке 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что соответствует синусоидальному распределению.

Элементарный синхронный генератор.

Британская энциклопедия, Inc.

Статор элементарного генератора на рисунке 2 состоит из цилиндрического кольца из железа, обеспечивающего легкий путь для магнитного потока. В этом случае статор содержит только одну катушку, две стороны которой размещены в пазах в утюге, а концы соединены вместе изогнутыми проводниками по периферии статора. Катушка обычно состоит из нескольких витков.

Когда ротор вращается, в обмотке статора индуцируется напряжение.В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окруженное катушкой, изменяется со временем, то есть скорости, с которой магнитное поле проходит через две стороны катушки. Таким образом, напряжение будет максимальным в одном направлении, когда ротор повернут на 90 ° от положения, показанного на рисунке 2, и будет максимальным в противоположном направлении на 180 ° позже. Форма волны напряжения будет примерно синусоидальной формы, показанной на рисунке 1.

Конструкция ротора генератора на рисунке 2 имеет два полюса: один для магнитного потока, направленного наружу, и соответствующий полюс для потока, направленного внутрь.Одна полная синусоида индуцируется в обмотке статора за каждый оборот ротора. Таким образом, частота электрического выходного сигнала, измеренная в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Чтобы обеспечить подачу электроэнергии с частотой 60 Гц, например, первичный двигатель и скорость ротора должны быть 60 оборотов в секунду или 3600 оборотов в минуту. Это удобная скорость для многих паровых и газовых турбин. Для очень больших турбин такая скорость может быть чрезмерной из-за механического напряжения.В этом случае ротор генератора спроектирован с четырьмя полюсами, разнесенными с интервалом 90 °. Напряжение, индуцированное в катушке статора, которая охватывает аналогичный угол 90 °, будет состоять из двух полных синусоидальных волн на оборот. Таким образом, требуемая частота вращения ротора для частоты 60 Гц составляет 1800 оборотов в минуту. Для более низких скоростей, например, используемых в большинстве водяных турбин, можно использовать большее количество пар полюсов. Возможные значения частоты вращения ротора в оборотах в минуту равны 120 f / p , где f - частота, а p - количество полюсов.

Электродвигатели и генераторы

Введение с использованием анимации и схем для объяснения физических принципов некоторых различных типов электродвигателей, генераторов, генераторов переменного тока, линейные двигатели и громкоговорители.

Двигатели постоянного тока

Простой двигатель постоянного тока имеет катушку с проволокой, которая может вращаться в магнитном поле. В ток в катушке подается через две щетки, которые обеспечивают подвижный контакт с разрезное кольцо.Катушка находится в постоянном магнитном поле. Силы приложили на токоведущих проводах создают крутящий момент на катушке. Сила F на проводе длиной L, по которому течет ток i в магнитном поле. B равно iLB, умноженному на синус угла между B и i, который будет равен 90 °, если поля были равномерно вертикальными. Направление F идет справа ручное правило, как показано здесь. Две силы, показанные здесь, равны и противоположны, но они смещены вертикально, поэтому создают крутящий момент.(Силы на две другие стороны катушки действуют по одной и той же линии и поэтому не создают крутящего момента.)

Катушку также можно рассматривать как магнитный диполь или небольшой электромагнит, как указано стрелкой SN: согните пальцы правой руки в направление течения, а большой палец - северный полюс. В эскизе Справа изображен электромагнит, образованный катушкой ротора. как постоянный магнит, и тот же крутящий момент (север притягивает юг) действовать для выравнивания центрального магнита.

Обратите внимание на влияние щеток на разрезное кольцо . Когда плоскость вращающейся катушки достигает горизонтали, щетки разорвут контакт (теряется не так много, потому что это точка нулевого момента все равно - силы действовать внутрь). Угловой момент катушки переносит ее через этот разрыв. точка, и ток затем течет в противоположном направлении, которое меняет направление на противоположное. магнитный диполь.Итак, после прохождения точки останова ротор продолжает движение. повернуть против часовой стрелки и начать выравнивание в обратном направлении. в В следующем тексте я буду в основном использовать картинку «крутящий момент на магните», но имейте в виду, что использование щеток или переменного тока может привести к появлению полюсов электромагнит, о котором идет речь, меняет положение, когда ток меняет направление.

Крутящий момент, создаваемый в течение цикла, зависит от вертикального разделения две силы.Следовательно, это зависит от синуса угла между ось катушки и поле. Однако из-за разрезного кольца оно всегда в том же смысле. Анимация ниже показывает его изменение во времени, а вы можно остановить на любом этапе и проверить направление, приложив правую руку правило.


Двигатели и генераторы

Теперь двигатель постоянного тока также является генератором постоянного тока.Взгляните на следующую анимацию. В катушка, разрезное кольцо, щетки и магнит - это то же оборудование, что и двигатель выше, но катушка вращается, что генерирует ЭДС.

Если вы используете механическую энергию для вращения катушки (N витков, область A) с равномерной угловая скорость ω в магнитном поле B , это создаст в катушке синусоидальную ЭДС. ЭДС (ЭДС или электродвижущая сила - это почти то же самое, что и напряжение).Пусть θ будет угол между B и нормалью к катушке, поэтому магнитный поток φ равен NAB.cos θ. Закон Фарадея дает:

Приведенная выше анимация будет называться генератором постоянного тока. Как и в двигателе постоянного тока, концы катушки соединяются с разрезным кольцом, две половины которого контактируют кистями. Обратите внимание, что щетки и разрезное кольцо «исправляют» создаваемую ЭДС: контакты организованы так, что ток всегда будет течь в одном и том же направление, потому что, когда катушка проходит мимо мертвой точки, где щетки встречаются зазор в кольце, соединения между концами катушки и внешние клеммы перевернуты.ЭДС здесь (без учета мертвой зоны, которая обычно бывает при нулевом напряжении) равна | НБА ω sin ωt |, как нарисовано.

Генератор

Если нам нужен AC, нам не нужно исправление, поэтому нам не нужны разрезные кольца. ( Этот это хорошая новость, потому что разрезные кольца вызывают искры, озон, радиопомехи и дополнительный износ. Если хочешь Постоянного тока, часто лучше использовать генератор и выпрямлять диоды.)

В следующей анимации две кисти соприкасаются с двумя непрерывными кольцами, поэтому две внешние клеммы всегда подключены к одним и тем же концам катушки.Результатом является не исправленная синусоидальная ЭДС, определяемая NBAω sin ωt, который показан на следующей анимации.

Это генератор переменного тока. Преимущества переменного и постоянного тока генераторы сравниваются в разделе ниже. Выше мы видели, что двигатель постоянного тока также является генератором постоянного тока. Точно так же генератор переменного тока также является двигателем переменного тока. Однако, это довольно негибкий. (Смотри как настоящие электродвигатели работают для более подробной информации.)

Задний ЭДС

Теперь, как показывают первые две анимации, двигатели и генераторы постоянного тока могут быть то же самое. Например, двигатели поездов становятся генераторами, когда поезд замедляется: они преобразуют кинетическую энергию в электрическую и мощность обратно в сеть. В последнее время несколько производителей начали выпуск автомобилей. рационально. В таких автомобилях электродвигатели, используемые для привода автомобиля, также используется для зарядки аккумуляторов при остановке автомобиля - это называется регенеративным торможение.

Итак, вот интересное следствие. Каждый двигатель - это генератор . Это правда, в некотором смысле, даже когда он функционирует как двигатель. ЭДС, что двигатель генерирует называется обратной ЭДС . Обратная ЭДС увеличивается с увеличением скорость из-за закона Фарадея. Итак, если двигатель не нагружен, он очень сильно крутится. быстро и разгоняется до появления обратной ЭДС плюс падение напряжения из-за потерь, равно напряжению питания. Обратную ЭДС можно рассматривать как «регулятор»: он останавливает двигатель, вращающийся бесконечно быстро (что избавляет физиков от некоторого затруднения).Когда двигатель загружен, то фаза напряжения становится ближе к фазе тока (начинает выглядят резистивными), и это кажущееся сопротивление дает напряжение. Итак, спина Требуемая ЭДС меньше, и двигатель вращается медленнее. (Чтобы добавить обратно ЭДС, которая является индуктивной, к резистивной составляющей необходимо добавить напряжения которые не совпадают по фазе. См. AC схем.)

Катушки обычно имеют сердечники

На практике (и в отличие от схем, которые мы нарисовали) генераторы и постоянный ток двигатели часто имеют сердечник с высокой проницаемостью внутри катушки, так что большие магнитные поля создаются умеренными токами.Это показано слева в рисунок ниже, на котором статоры (статические магниты) постоянные магниты.

Моторы универсальные

Магниты статора также могут быть выполнены в виде электромагнитов, как показано выше. справа. Два статора намотаны в одном направлении, чтобы поле в том же направлении, а ротор имеет поле, которое дважды меняет направление за цикл, потому что он подключен к щеткам, которые здесь не указаны.Один Преимущество наличия статоров в двигателе состоит в том, что можно сделать двигатель который работает от переменного или постоянного тока, так называемый универсальный двигатель . Когда вы едете у такого мотора с переменным током ток в катушке меняется дважды в каждом цикле (помимо изменений со щеток), а вот полярность статоров изменяется одновременно, поэтому эти изменения аннулируются. (К сожалению, кисти еще остались, хотя я спрятал их в этом наброске.) За преимущества и недостатки постоянного магнита по сравнению со статорами с обмоткой см. ниже. Также смотрите больше на универсальных моторах.

Построить простой двигатель

Чтобы построить этот простой, но странный мотор, вам понадобятся два довольно сильных магнита. (подойдут редкоземельные магниты диаметром около 10 мм, магниты), жёсткий медный провод (не менее 50 см), два провода с крокодилом зажимы на обоих концах, фонарь на шесть вольт, две банки для безалкогольных напитков, два блока дерева, липкой ленты и острого гвоздя.

Сделайте катушку из жесткого медного провода, чтобы не нуждаться во внешних служба поддержки. Намотайте от 5 до 20 витков по кругу диаметром около 20 мм и два конца радиально направлены наружу в противоположных направлениях. Эти цели будут быть одновременно осью и контактами. Если провод имеет лаковую или пластиковую изоляцию, снимите его на концах.

Опоры оси могут быть выполнены из алюминия, поэтому что они создают электрический контакт.Например, проткнуть безалкогольный напиток банки с гвоздем, как показано на рисунке. Расположите два магнита с севера на юг, так что магнитное поле проходит через катушку под прямым углом к оси. Приклейте магниты изолентой или приклейте к деревянным блокам (не показаны на диаграмме), чтобы они оставались на нужной высоте, затем переместите блоки поставить их на место, достаточно близко к катушке. Сначала поверните катушку так что магнитный поток через катушку равен нулю, как показано на схеме.

Теперь возьмем аккумулятор и два провода с зажимами типа «крокодил». Соединять два вывода аккумулятора к двум металлическим опорам для катушка и она должна повернуться.

Обратите внимание, что у этого двигателя есть по крайней мере одна «мертвая зона»: он часто останавливается. в положении, когда на катушке отсутствует крутящий момент. Не уходи он горит слишком долго: он быстро разряжает аккумулятор.

Оптимальное количество витков в катушке зависит от внутреннего сопротивление аккумулятора, качество опорных контактов и тип провода, поэтому вам следует поэкспериментировать с разными значениями.

Как уже говорилось выше, это тоже генератор, но очень неэффективный. Чтобы увеличить ЭДС, используйте больше витков (может потребоваться использовать более тонкую проволоку и рамку для намотки.) Вы можете использовать например, электродрель, чтобы быстро ее повернуть, как показано на рисунке выше. Воспользуйтесь осциллографом, чтобы посмотреть на генерируемую ЭДС. Это переменный или постоянный ток?

У этого двигателя нет разъемного кольца, почему он работает на DC? Проще говоря, если бы он был точно симметричным, это не сработало бы.Однако, если ток в одном полупериоде немного меньше, чем в другом, то средний крутящий момент не будет равен нулю, и, поскольку он вращается достаточно быстро, угловой момент, приобретенный во время полупериода с большим током, переносит его через полупериод, когда крутящий момент находится в противоположном направлении. По крайней мере два эффекта могут вызвать асимметрию. Даже если провода полностью зачищены и чистые, контактное сопротивление вряд ли будет одинаковым даже в состоянии покоя. Кроме того, само вращение вызывает прерывистый контакт, поэтому, если во время одной фазы есть более длительные отскоки, этой асимметрии будет достаточно.В принципе, вы можете частично зачистить провода таким образом, чтобы ток был равен нулю за один полупериод.

Альтернативная версия простого двигателя Джеймса Тейлор.
Еще более простой двигатель (который также намного проще для понимания!) - это униполярный двигатель.

Двигатели переменного тока

С помощью переменного тока мы можем изменить направление поля без использования щеток.Это хорошие новости, потому что мы можем избежать дуги, образования озона и омическая потеря энергии, которую могут повлечь за собой щетки. Далее, потому что кисти контактируют между движущимися поверхностями, они изнашиваются.

Первое, что нужно сделать в двигателе переменного тока, - это создать вращающееся поле. 'Обычный' Переменный ток от 2-х или 3-х контактной розетки - это однофазный переменный ток - он имеет одну синусоидальную разность потенциалов создается только между двумя проводами - активным и нейтральным. (Обратите внимание, что заземляющий провод не пропускает ток, за исключением электрические неисправности.) При однофазном переменном токе можно создать вращающееся поле. за счет генерации двух противофазных токов с помощью, например, конденсатора. В показанном примере два тока сдвинуты по фазе на 90 °, поэтому вертикальный составляющая магнитного поля синусоидальная, а горизонтальная косусоидальная, как показано. Это дает поле, вращающееся против часовой стрелки.

(* Меня попросили объяснить это: из простого AC Теоретически, ни катушки, ни конденсаторы не имеют напряжения в фазе с электрический ток.В конденсаторе напряжение максимально, когда заряд закончил течь на конденсатор и вот-вот начнет стекать. Таким образом, напряжение отстает от тока. В чисто индуктивной катушке падение напряжения является наибольшим, когда ток изменяется наиболее быстро, что также когда ток равен нулю. Напряжение (падение) опережает ток. В моторных катушках фазовый угол меньше 90, потому что электрические энергия преобразуется в механическую энергию.)

На этой анимации графики показывают изменение токов во времени. в вертикальной и горизонтальной катушках. График компонент поля B x и B y показывает, что векторная сумма этих двух полей является вращающейся поле. Основное изображение показывает вращающееся поле. Он также показывает полярность магнитов: как указано выше, синий представляет северный полюс, а красный - южный полюс.

Если мы поместим постоянный магнит в эту область вращающегося поля, или если мы положим в катушке, ток которой всегда течет в одном и том же направлении, тогда это становится синхронный двигатель . В широком диапазоне условий двигатель будет повернуть со скоростью магнитного поля. Если у нас много статоров, вместо этого всего двух пар, показанных здесь, то мы могли бы рассматривать его как шаговый двигатель: каждый импульс перемещает ротор на следующую пару задействованных полюсов.Пожалуйста, помните мое предупреждение об идеализированной геометрии: настоящие шаговые двигатели десятки полюсов и довольно сложные геометрические формы!

Асинхронные двигатели

Теперь, поскольку у нас есть изменяющееся во времени магнитное поле, мы можем использовать наведенную ЭДС в катушке - или даже просто вихревые токи в проводнике - чтобы ротор магнит. Правильно, если у вас есть вращающееся магнитное поле, вы можете просто вставил проводник и получается.Это дает некоторые из преимуществ асинхронные двигатели : отсутствие щеток или коммутатора означает более простое производство, нет износ, отсутствие искр, отсутствие образования озона и отсутствие связанных с этим потерь энергии с ними. Слева внизу схематическое изображение асинхронного двигателя. (Для фотографий настоящие асинхронные двигатели и более подробную информацию см. в разделе «Индукция». двигатели.)

Анимация справа представляет двигатель с короткозамкнутым ротором .Белка клетка имеет (во всяком случае, в этой упрощенной геометрии!) два круглых проводника, соединенных несколькими прямыми стержнями. Любые два стержня и соединяющие их дуги образуют катушка - на что указывают синие черточки на анимации. (Только два из для простоты показано много возможных схем.)

На этой схеме показано, почему их можно назвать двигателями с короткозамкнутым ротором. Реальность иная: фотографии и подробности см. В разделе «Индукция». моторы.Проблема с показанными асинхронными двигателями и двигателями с короткозамкнутым ротором в этой анимации показано, что конденсаторы высокой стоимости и высокого напряжения стоят дорого. Одним из решений является двигатель с экранированным полюсом, но его вращающийся поле имеет некоторые направления, в которых крутящий момент небольшой, и имеет тенденцию бежать назад при некоторых условиях. Самый простой способ избежать этого - использовать многофазные двигатели.

Трехфазные асинхронные двигатели переменного тока

Однофазный используется в домашних условиях для приложений с низким энергопотреблением, но у него есть недостатки.Во-первых, он выключается 100 раз в секунду (вы не обратите внимание, что флуоресцентные лампы мигают с такой скоростью, потому что ваши глаза слишком медленные: даже 25 изображений в секунду на экране телевизора достаточно, чтобы дать иллюзию непрерывного движения.) Во-вторых, это делает его неудобным для создания вращающихся магнитных полей. По этой причине некоторая высокая мощность (несколько кВт) для бытовых устройств может потребоваться трехфазная установка. Промышленное применение широко использовать трехфазный двигатель, трехфазный асинхронный двигатель является стандартным рабочая лошадка для приложений большой мощности.Три провода (не считая земли) несут три возможных разности потенциалов, которые не совпадают по фазе с каждым другое на 120 °, как показано на анимации ниже. Таким образом, три статора плавно вращающееся поле. (Видеть это ссылку для получения дополнительной информации о трехфазном питании.)

Если поместить постоянный магнит в такой набор статоров, он станет синхронным. трехфазный двигатель .На анимации изображена беличья клетка, в которой простота показана только одна из многих петель наведенного тока. Без механической нагрузки, он вращается практически синхронно с вращающимся полем. Ротор не обязательно должен быть беличьей клеткой: на самом деле любой проводник, который будет переносимые вихревые токи будут вращаться, стремясь следовать за вращающимся полем. Такая компоновка может дать асинхронный двигатель , обладающий высокой эффективностью, высокая мощность и высокие крутящие моменты в диапазоне скоростей вращения.

Линейные двигатели

Набор катушек можно использовать для создания магнитного поля, которое переводит, скорее, чем вращается. На паре катушек на анимации ниже подается импульс от слева направо, поэтому область магнитного поля перемещается слева направо. А постоянный или электромагнит будет стремиться следовать за полем. Так что простой плита из проводящего материала, потому что в ней наведены вихревые токи (не показаны) содержат электромагнит. В качестве альтернативы мы могли бы сказать, что из Фарадея закон, ЭДС в металлической плите всегда индуцируется, чтобы противодействовать любому изменению в магнитном потоке, а силы на токах, вызванные этой ЭДС, сохраняют поток в плите почти постоянный.(Вихревые токи на этой анимации не показаны.)

В качестве альтернативы мы могли бы иметь комплекты катушек с питанием в подвижной части, и индуцируют вихревые токи в рельсе. В любом случае получается линейный двигатель, который был бы полезен, скажем, для поездов на магнитной подвеске. (В анимации геометрия как обычно на этом сайте, в высшей степени идеализирован, и только один вихретоковый ток показано.)

Некоторые примечания к двигателям переменного и постоянного тока для приложений большой мощности

    Этот сайт изначально был написан в помощь старшеклассникам. и учителя в Новом Южном Уэльсе, Австралия, где сосредоточены новые учебные программы по истории и приложениям физики за счет самой физики, был введен.В новой программе в одной из точечных точек указано следующее: озадачивающее требование: «объясните, что двигатели переменного тока обычно вырабатывают малую мощность и связывают это с их использованием в электроинструментах ".
Двигатели переменного тока используются для приложений с большой мощностью, когда это возможно. Три фазные асинхронные двигатели переменного тока широко используются для приложений большой мощности, в том числе тяжелая промышленность. Однако такие двигатели непригодны, если многофазность недоступна, или трудно доставить.Электропоезда тому пример: строить проще линии электропередач и пантографы, если нужен только один активный проводник, так что это обычно имеет постоянный ток, и многие двигатели поездов работают на постоянном токе. Однако из-за недостатков постоянного тока для высокой мощности, более современные поезда преобразуют постоянный ток в переменный, а затем бегут трехфазные двигатели.

Однофазные асинхронные двигатели имеют проблемы при объединении приложений высокая мощность и гибкие условия нагрузки. Проблема заключается в создании вращающееся поле.Конденсатор может использоваться для подачи тока в один набор катушки впереди, но дорогие высоковольтные конденсаторы стоят дорого. Затененный Вместо них используются полюсы, но крутящий момент на некоторых углах невелик. Если нельзя создают плавно вращающееся поле, и если груз «проскальзывает» далеко за поле, то крутящий момент падает или даже меняется на противоположное.

В электроинструментах и ​​некоторых приборах используются щеточные электродвигатели переменного тока. Кисти вводят потери (плюс образование дуги и озона).Полярность статора изменена. 100 раз в секунду. Даже если материал сердечника выбран так, чтобы минимизировать гистерезис потери («потери в железе»), это способствует неэффективности и возможности перегрева. Эти моторы можно назвать универсальными. двигатели, потому что они могут работать на постоянном токе. Это дешевое, но грубое решение. и неэффективно. Для приложений с относительно низким энергопотреблением, таких как электроинструменты, неэффективность обычно экономически не важна.

Если доступен только однофазный переменный ток, можно исправить переменный ток и использовать Двигатель постоянного тока. Раньше сильноточные выпрямители были дорогими, но сейчас они становятся все более дорогими. менее дорогой и более широко используемый. Если вы уверены, что понимаете принципы, пора перейти к разделу "Как настоящие электродвигатели работают Джона Стори. Или продолжайте здесь, чтобы найти о громкоговорителях и трансформаторах.


Громкоговорители

Громкоговоритель - это линейный двигатель с небольшим диапазоном.Имеет одинарное перемещение катушка, которая постоянно, но гибко подключена к источнику напряжения, поэтому кистей нет.
The катушка движется в поле постоянного магнита, который обычно имеет форму для создания максимального усилия на катушке. Подвижная катушка не имеет сердечника, поэтому его масса невелика, и он может быстро ускоряться, что позволяет частота движения.В громкоговорителе катушка прикреплена к легкому весу. бумажный конус, который поддерживается на внутреннем и внешнем краях круглыми, плиссированные бумажные «пружины». На фотографии ниже динамик выходит за рамки нормальный верхний предел его перемещения, поэтому катушка видна над полюса магнита.

Для низкочастотного звука с большой длиной волны необходимы большие диффузоры. Диаметр динамика, показанного ниже, составляет 380 мм. Колонки, предназначенные для низкие частоты называются вуферами.Они имеют большую массу и поэтому трудно быстро разогнаться для высокочастотных звуков. На фотографии ниже часть вырезана, чтобы показать внутренние компоненты.

Твитеры - громкоговорители, предназначенные для высоких частот - могут быть просто динамики аналогичной конструкции, но с небольшими диффузорами и катушками малой массы. В качестве альтернативы они могут использовать пьезоэлектрические кристаллы для перемещения конуса.

Громкоговорители представляют собой линейные двигатели со скромным диапазоном - возможно, десятки мм. Подобные линейные двигатели, хотя, конечно, без бумажного конуса, часто используется для радиального перемещения считывающей и записывающей головок на дисководе.

Предупреждение: настоящие двигатели сложнее

Эскизы двигателей были схемами, чтобы показать принципы. Пожалуйста, не сердитесь, если, когда вы разбираете мотор, он выглядит больше. сложный! (Смотри как настоящие электродвигатели работают.) Например, типичный двигатель постоянного тока вероятно, будет иметь много отдельно намотанных катушек для обеспечения более плавного крутящего момента: всегда есть одна катушка, для которой синусоидальный член близок к единице. Это показано ниже для двигателя с обмотанными статорами (вверху) и постоянные статоры (внизу).

Трансформаторы

На фотографии изображен трансформатор, предназначенный для демонстрационных целей: первичная и вторичная обмотки четко разделены и могут быть удалены и заменен поднятием верхней части сердечника.Для наших целей отметим что у катушки слева меньше катушек, чем у правой (вставки показать крупные планы).

На эскизе и схеме показан повышающий трансформатор. Чтобы сделать понижающий трансформатор, достаточно разместить источник справа, а нагрузку - слева. ( Важно Примечание по безопасности : для настоящего трансформатора вы можете только «подключить его задом наперед» только после проверки соответствия номинального напряжения.) Итак, как же трансформатор работает?

Сердечник (заштрихованный) имеет высокую магнитную проницаемость, т.е. материал, образующий магнитное поле намного легче, чем свободное пространство, из-за ориентации атомных диполей. (На фотографии сердечник - ламинированное мягкое железо.) В результате поле сконцентрировано внутри ядра, и почти силовые линии не выходят из ядра. Если следует, что магнитные потоки φ через первичный и вторичный примерно равны, как показано.Из Фарадея По закону ЭДС на каждом витке первичной или вторичной обмотки составляет −dφ / dt. Если пренебречь сопротивлением и другими потерями в трансформаторе, вывод напряжение равно ЭДС. Для N p витков первичной обмотки это дает

Для N s витков вторичной обмотки это дает Разделение этих уравнений дает уравнение преобразователя где r - коэффициент поворотов.А что с током? Если пренебречь потерями в трансформатор (см. ниже раздел об эффективности), и если мы предположим, что напряжение и ток имеют одинаковое фазовое соотношение в первичной обмотке и вторичный, то из сохранения энергии мы можем записать в установившемся состоянии:
    Power in = power out, поэтому

    V p I p = V s I s , откуда

    I с / I p = N p / N с = 1 / r.

Так что ничего не получишь даром: если увеличишь напряжение, то уменьшишься. ток (по крайней мере) в тот же коэффициент. Обратите внимание, что на фотографии катушка с большим количеством витков имеет более тонкий провод, потому что она предназначена для меньшего ток, чем тот, с меньшим количеством витков.

В некоторых случаях целью упражнения является уменьшение силы тока. В силе линии передачи, например, потери мощности при нагревании проводов из-за их ненулевое сопротивление пропорционально квадрату тока.Таким образом, передача электроэнергии от электростанции позволяет сэкономить много энергии. в город при очень высоких напряжениях, так что токи невелики.

Наконец, и снова предполагая, что трансформатор идеален, давайте спросим, ​​что резистор во вторичной цепи «похож» на первичную цепь. В первичном контуре:

    V p = V s / r и I p = Я с .г так

    В p / I p = V с / r 2 I с = Р / р 2 .

R / r 2 называется отраженным сопротивлением . При условии, что частота не слишком высока, и при наличии сопротивления нагрузки (условия обычно встречается в практических трансформаторах), индуктивное сопротивление первичной обмотки намного меньше, чем это отраженное сопротивление, поэтому первичная цепь ведет себя как если бы источник управлял резистором номиналом R / r 2 .
КПД трансформаторов
На практике реальные трансформаторы имеют КПД менее 100%.
  • Во-первых, это резистивные потери в катушках (потеря мощности I 2 .r). Для данного материала сопротивление катушек можно уменьшить, сделав их поперечное сечение большое. Удельное сопротивление также можно сделать низким, используя медь высокой чистоты. (См. Дрейф скорости и закон Ома.)
  • Во-вторых, в сердечнике наблюдаются потери на вихревые токи.Это может быть уменьшается за счет ламинирования сердечника. Ламинирование уменьшает площадь цепей в ядре, и таким образом уменьшите ЭДС Фарадея, и, таким образом, текущий текущий в ядре, и таким образом теряется энергия.
  • В-третьих, в сердечнике есть гистерезисные потери. Намагничивание и кривые размагничивания магнитных материалов часто немного отличаются (гистерезис или зависимость от истории), и это означает, что требуемая энергия намагничивать сердечник (при увеличении тока) не совсем восстанавливается во время размагничивания.Разница в энергии теряется в виде тепла. в основном.
  • Наконец, геометрический дизайн, а также материал сердечника могут быть оптимизированным, чтобы гарантировать, что магнитный поток в каждой катушке вторичной обмотки почти такой же, как и в каждой катушке первичной обмотки.
Подробнее о трансформаторах: генераторы переменного и постоянного тока
Трансформаторы работают только от переменного тока, что является одним из больших преимуществ переменного тока.Трансформеры позволяют понижать 240 В до уровня, удобного для цифровой электроники (всего несколько вольт) или для других приложений с низким энергопотреблением (обычно 12 В). Трансформеры повышайте напряжение для передачи, как упомянуто выше, и понижайте для безопасности распределение. Без трансформаторов потери электроэнергии при распределении сети, и без того высокие, были бы огромными. Возможно преобразование напряжения в DC, но сложнее, чем в AC. Кроме того, такие преобразования часто неэффективно и / или дорого.Дополнительным преимуществом переменного тока является то, что его можно использовать на двигателях переменного тока, которые обычно предпочтительнее двигателей постоянного тока для приложений большой мощности.

Другие ресурсы от нас

Некоторые внешние ссылки на веб-ресурсы по двигателям и генераторам

  • Гиперфизика: Электромоторы с сайта HyperPhysics в штате Джорджия. Отлично сайт габаритный, и моторный отсек для этого идеально подходит. Хороший использование веб-графики.Производит двигатели постоянного, переменного тока и асинхронные двигатели и имеет обширный ссылки
  • Громкоговорители .. Еще больше хороших материалов от Государственной Гиперфизики Джорджии. Хорошая графика, хорошие объяснения и ссылки. Этот громкоговоритель сайт также включает в себя вложения.
  • http://members.tripod.com/simplemotor/rsmotor.htm A сайт, описывающий двигатель, построенный студентами. Ссылки на другие двигатели, построенные тот же студент и ссылки также на сайты о моторах.
  • http://www.specamotor.com A сайт, который сортирует двигатели различных производителей в соответствии со спецификациями, введенными пользователем.

В чем разница между постоянными магнитами и наличие электромагнитов в двигателе постоянного тока? Это делает его более эффективным или более могущественный? Или просто дешевле?

Когда я получил этот вопрос на Высшем Доска объявлений школьной физики, я отправил ее Джону Стори, который не только выдающийся астроном, но и строитель электромобилей.Вот его ответ:

В общем, для небольшого двигателя намного дешевле использовать постоянные магниты. Материалы для постоянных магнитов продолжают совершенствоваться и стали настолько недорогими что даже правительство время от времени присылает вам бессмысленные магниты на холодильник через почту. Постоянные магниты также более эффективны, потому что нет энергии тратится на создание магнитного поля. Так зачем вообще использовать раневое поле Двигатель постоянного тока? Вот несколько причин:

  • Если вы строите действительно большой двигатель, вам понадобится очень большой магнит и в какой-то момент раневое поле может подешеветь, особенно если очень Для создания большого крутящего момента необходимо сильное магнитное поле.Имейте это в виду если вы проектируете поезд. По этой причине в большинстве автомобилей есть стартеры. которые используют поле раны (хотя некоторые современные автомобили теперь используют постоянные магнитные двигатели).
  • У постоянного магнита магнитное поле имеет фиксированное значение (то есть что означает "постоянный"!) Напомним, что крутящий момент, создаваемый двигателем заданная геометрия равна произведению тока через якорь и напряженность магнитного поля.С двигателем с возбужденным полем у вас есть возможность изменения тока через поле и, следовательно, изменения моторные характеристики. Это открывает ряд интересных возможностей; вы ставите обмотку возбуждения последовательно с якорем, параллельно, или кормить из отдельно контролируемого источника? Пока есть достаточно крутящий момент для преодоления нагрузки на двигатель, внутреннего трения и т. д., чем слабее магнитное поле, тем * быстрее * двигатель будет вращаться (при фиксированной Напряжение).Сначала это может показаться странным, но это правда! Итак, если вы хотите двигатель, который может производить большой крутящий момент в состоянии покоя, но при этом сильно вращаться скорости при низкой нагрузке (как продвигается конструкция поезда?), возможно раневое поле - вот ответ.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *