Генератор на постоянных магнитах тракторный: 3 доступных метода создания самодельного ветрогенератора

Содержание

3 доступных метода создания самодельного ветрогенератора

Основная проблема, возникающая при самостоятельном изготовлении ветрогенератора — это устройство, непосредственно генерирующее ток. Самодельный генератор имеет довольно случайные рабочие параметры, так как даже тщательный расчет не позволяет учесть все тонкие эффекты. К тому же, получается слишком много величин, взятых приблизительно, что уменьшает точность расчетов.

Практика показывает, что для наиболее эффективной генерации тока лучше всего использовать готовые устройства, модифицированные для использования на ветряках. Рассмотрим вариант с применением тракторного и автомобильного генератора.

Генератор для ветряка за один день

Наиболее рациональным решением будет использовать готовый генератор, конструкция которого предназначена для выработки электрического тока. Единственной задачей в этом случае станет подгонка параметров устройства под условия работы от ротора ветряка, т.е. под определенную скорость вращения. Чаще всего это занимает совсем немного времени, что позволяет получить готовый генератор буквально за день.

Наиболее удачным и простым решением станет использование тракторного генератора, имеющего наиболее близкие характеристики и доступного для различных модернизаций конструкции.

Используем запчасти от трактора

Для того, чтобы генератор от трактора начал выдавать заявленную мощность, надо, чтобы ротор обеспечил довольно высокую скорость вращения — около 2000 об/мин (некоторые конструкции требуют 5-6 тыс. об.). При работе напрямую от крыльчатки это практически невозможно, требуется редуктор (как минимум, система шкивов).

Пониженная частота вращения требует изменения количества витков на обмотках.

Они перематываются на большее число витков более тонким проводом (с обычных 63 витков мотают примерно 80). Также требует увеличения количества витков катушка возбуждения, которую обычно просто доматывают до большего количества (около 250 витков). Кроме того, надо отсоединить реле-регулятор напряжения, так как никакой нужды в не больше нет.

Такие изменения корректируют работу генератора и переводят его на меньший номинал скорости вращения. При этом, использование повышающей передачи все равно необходимо, так как простым увеличением числа витков проблема не решается.

Важно! Приведенное количество витков не является точным значением для любой марки генератора. Разные конструкции нуждаются в соответствующих объемах обмоток, которые подсчитываются отдельно. Иногда приходится действовать методом проб и ошибок, так как скорость вращения ветряка не имеет стабильного значения.

Существует еще один вариант использования тракторного генератора, когда на вал устанавливаются мощные постоянные магниты.

В этом случае понадобится только усилить обмотки статора, модернизация обмоток электромагнитов становится не нужна. Рекомендуется использовать мощные неодимовые магниты, позволяющие создавать довольно высокое напряжение в обмотках статора при относительно низких скоростях вращения.

Ветрогенератор из магнето

Магнето имеет несколько иную конструкцию, чем тракторный генератор. Оно оснащено двумя обмотками, низкого и высокого напряжения. Вторая обмотка не нужна, так как вольтаж, который она способна выдавать, не подойдет для ветряка. Небольшое усиление скорости ветра вызовет резкий скачок напряжения, что может вывести из строя потребители или промежуточное оборудование. Поэтому вторичную обмотку демонтируют, а первичную перематывают на большую мощность, чтобы устройство способно было выдавать результат на низких оборотах.

Кроме этого, понадобится исключить участие прерывателя. Здесь действуют двумя методами:

  • физический демонтаж кулачка прерывателя;
  • установка между контактами замыкающей перемычки, обеспечивающей постоянное соединение.

Использование генератора от Еврокамаза

Использование генератора от Еврокамаза возможно при внесении небольших изменений. Конструкция такого устройства весьма близка к тракторной, но имеет более высокое напряжение и силу тока. Порядок модернизации узла такой же, перематываются обмотки и устанавливаются мощные магниты, создающие переменное магнитное поле.

Изначальная рабочая скорость вращения ротора слишком высока, поэтому потребуется увеличение количества витков на обмотках, позволяющее реагировать на малые значения скорости. После намотки рекомендуется присоединить генератор к источнику вращения (чаще всего используют электродрель) и замерить величину вырабатываемого тока. Такой предварительный замер позволит получить определенную информацию о параметрах полученного устройства и, по необходимости, внести некоторые изменения в конструкцию.

Рекомендуемые товары

Ветрогенератор своими руками из тракторного генератора

Полезные приспособления /25-янв,2018,18;19 / 7139
Умелец сделал из тракторного генератора Г700.04.01 вертикальный ветрогенератор своими руками для зарядки своих аккумуляторов снабдив его винтом с одной лопастью.
По задумке автора, ветрогенератором для зарядки аккумуляторных батарей выступает тракторный генератор.
Характеристики генератора Г700.04.01:
• Номинальное напряжение – 14V.
• Номинальный ток – 50А.
• Номинальная частота вращения – 5000 об/мин.
• Максимальная частота вращения – 6000 об/мин.
• Вес – 5,4 кг.


Тракторный генератор является высокооборотным агрегатом, им выдается зарядка для аккумулятора при больше чем 1000 об/мин, поэтому без переоборудования на ветряк он не подходит.
Чтобы генератор был способен заряжать батарею в условиях низких оборотов, его пришлось дорабатывать.
Мастер перемотал статор – 80 витков для каждой катушки, используя провод 0,8 мм. Катушку возбуждения электромагнита автор перемотал и увеличил на 250 витков, применив такой же провод. Он дополнительно использовал 200 м провода, чтобы перемотать статор и домотать катушку.
Затем умелец сварил крепление для генератора, используя профтрубу, изготовил защиту от сильного ветра. Она выполнена в виде складывающегося хвостовика, одевающегося на шкворень.
Выбирая винт, автор решил в первую очередь создать конструкцию с двумя лопастями, диаметр винта – 1360 мм. Для лопастей использована алюминиевая труба с сечением 110 мм, которые были раскатаны. Длина каждой из них – 630 мм.
Мастер установил ветрогенератор на 5-метровую мачту. Он отбросил идею с токосъемными кольцами и пустил провод генератора внутри в трубе мачты.
Для фиксации мачты на высоте 4 м использованы тросовые растяжки.
Ветрогенератор начинает заряжать аккумулятор, если появляется скорость ветра достигает 3,5 м/с.
4 м/с – 300 об/мин.
7 м/с – 900 об/мин, генератор обеспечивает порядка 150 Ватт.
15 м/с – скорость вращения винта достигает 1500 об/мин, ветрогенератор выдает порядка 250 ватт. Эти параметры достаточны для того, чтобы зарядить автомобильный аккумулятор.

Для усовершенствования своей установки автор увеличивает обороты – он переделывает двухлопастный винт в винт с одной лопастью.
Винт с одной лопастью обладает таким преимуществом как высокий коэффициент использования энергии ветра. При одной и той же скорости ветра винт с одной лопастью вращается вдвое быстрее, чем трехлопастный винт.



Однако для изготовления однолопастного винта нужно провести непростую операцию – его балансировку. В противном случае из-за сильных вибраций подшипник генератора разрушится, преждевременно выйдет из строя.

Местом фиксации такого винта выступает трубка, на которой предусмотрен противовес. Работа конструкции заключается в принципе коромысла.
Крепление под балку лопасти автор приварил на генераторный шкив, в балке просверлил отверстие для шпильки М6. В крепление он вставил два ограничителя в виде шпилек, чтобы винт не задевал мачту.
На фото – крепление винта на шпильке М6, отклонение винта от оси может составлять 15 градусов.
Во время вращения однолопастный винт может отклоняться от оси. Таким образом он мягче реагирует на повороты установки.
Вращение винта.
В случае с ураганным ветром хвостовик происходит поворот хвостовика, он вырывает винт из потока воздуха.
Автор провел испытания конструкции и получил приличные результаты. В случае правильной балансировки винта вал генератора вращается существенно быстрее. В итоге генератором вырабатывается больше электроэнергии, даже если дует слабый ветер.

Ветрогенератор из тракторного генератора с самовозбуждением

Авто-генератор на ветряк без переделки

Автомобильный генератор самый доступный генератор, и если планируется делать ветрогенератор, то сразу невольно при поиске генератора вспоминается именно автомобильный генератор.

Но без переделки на магниты и перемотки статора он не подходит для ветряка так-как рабочие обороты автомобильных генераторов 1200-6000 об/м.

По-этому чтобы избавится от катушки возбуждения ротор переделывают на неодимовые магниты, и чтобы поднять напряжение перематывают статор более тонким проводом. В итоге получается генератор мощностью при 10 м/с 150-300 ватт без использования мультипликатора (редуктора). Винт ставят на такой переделанный генератор диаметром 1.2-1.8 метра.

Сам автомобильный генератор очень доступен и его можно легко купить Б/У или новый в магазине, стоят они не дорого. Но вот чтобы переделать генератор нужны неодимовые магниты, провод для перемотки, а это ещё дополнительные траты денег. Так-же конечно надо уметь это делать, иначе можно всё испортить и выкинуть в мусор. Без переделки генератор можно использовать если сделать мультипликатор, к примеру если передаточное соотношение сделать 1:10, то при 120 об/м начнётся зарядка аккумулятора 12 вольт. При этом катушка возбуждения (ротор) будет потреблять около 30-40 ватт, а всё что останется пойдёт в аккумулятор.

Но если делать с мультипликатором, то конечно получится мощный и большой ветрогенератор, но при малом ветре катушка возбуждения будет потреблять свои 30-40 ватт и аккумулятору мало что достанется. Нормальная работа будет наверно на ветре от 5 м/с. При этом винт для такого ветряка должен быть диаметром около 3 метра. Получится сложная и тяжёлая конструкция. А самое сложное это найти готовый мультипликатор, подходящий с минимальными переделками, или изготовление самодельного. Мне кажется сделать мультипликатор сложнее и дороже чем переделать генератор на магниты и перемотать статор.

Если авто-генератор использовать без переделки, то он начнёт заряжать АКБ 12 вольт при 1200 об/м. Сам я не проверял при каких оборотах начинается зарядка, но в интернете после долгих поисков нашёл некоторую информацию, которая указывает что при 1200 об/м начинается зарядка АКБ. Есть упоминания что генератор заряжает при 700-800 об/м, но проверить это не представляется возможным. Я по фотографиям статора определил что обмотка статора современных генераторов ВАЗ состоит из 18 катушек, а каждая катушка имеет по 5 витков.

Посчитал какое должно получится напряжение по формуле из вот этой статьи Расчёт генератора. В результате у меня как-раз получилось что 14 вольт при 1200 об/м. Конечно генераторы не все одинаковые и я где-то читал про 7 витков в катушках вместо пяти, но в основном 5 витков в катушке, а значит всё-таки 14 вольт достигается при 1200 об/м, от этого будем исходить далее.

Двух-лопастной винт на генератор без переделки

В принципе если на генератор поставить скоростной двух-лопастной винт диаметром 1-1.2 метра, то такие обороты легко достигаются при ветре 7-8м/с. Значит можно сделать ветряк и не переделывая генератор, только работать он будет на ветре от 7м/с. Ниже скриншот с данными двух-лопастного винта. Как видно обороты такого винта при ветре 8м/с составляют 1339 об/м.

Так-как обороты винта растут линейно в зависимости от скорости ветра, то (1339:8*7=1171 об/м) при 7м/с начнётся зарядка АКБ. При 8 м/с ожидаемая мощность опять-же по расчёту должна быть (14:1200*1339=15. 6 вольт) (15.6-13=2.6:0.4=6.5 ампер*13=84.5 ватт). Полезная мощность винта судя по скриншоту 100 ватт, по-этому он свободно потянет генератор и должен недогруженный выдать даже больше оборотов чем указано. В итоге 84 .5 ватт должно быть с генератора при 8 м/с, но катушка возбуждения потребляет около 30-40 ватт, значит в аккумулятор пойдёт всего 40-50 ватт энергии. Совсем мало конечно так-как переделанный на магниты генератор и перемотанный при этом-же ветре на оборотах 500-600 об/м выдаст в три раза больше мощности.

При ветре 10 м/с обороты будут (1339:8*10=1673 об/м), напряжение в холостую (14:1200*1673=19.5 вольт), а под нагрузкой АКБ (19.5-13=6.5:0.4=16.2 ампер*13=210 ватт). В итоге получится 210 ватт мощности минус 40 ватт на катушку и полезной мощности останется 170 ватт. При 12 м/с будет примерно так 2008 об/м, напряжение без нагрузки 23.4 вольта, ток 26 ампер, минус 3 ампер на возбуждение, и того 23 ампер ток зарядки аккумулятора, мощность 300 ватт.

Если сделать винт меньшего диаметра, то обороты ещё возрастут, но тогда винт не потянет генератор когда достигнет порог зарядки акб. Я посчитал разные варианты во время написания этой статьи и дву-лопастной винт оказался самым оптимальным для генератора без переделки.

В принципе если рассчитывать на ветра от 7м/с и выше, то такой ветрогенератор будет хорошо работать и выдавать 300 ватт при 12 м/с. При этом стоимость ветряка будет совсем небольшой, по сути только цена генератора, а винт и остальное можно сделать из того что есть. Только винт нужно делать обязательно по расчётам.

Переделанный правильно генератор начинает давать заряду уже с 4 м/с, при 5 м/с ток зарядки уже 2 ампера, при этом так-как ротор на магнитах, то весь ток идет в АКБ. При 7 м/с ток зарядки 4-5 ампер, а при 10 м/с уже 8-10 ампер. Получается что только при сильном ветре 10-12 м/с генератор без переделки может сравнится с переделанным, но он ничего не даст на ветре меньше 8 м/с.

Самовозбуждение автомобильного генератора

Чтобы генератор самовозбуждался без аккумулятора в ротор нужно поставить пару маленьких магнитиков. Если катушку возбуждения запитать от аккумулятора, то она постоянно и не зависимо от того вырабатывает энергию или нет ветрогенератор, будет потреблять свои 3 ампера и заряжать аккумулятор. Чтобы этого не происходило нужно поставить блокирующий диод, чтобы ток шол только в акб, а обратно не уходил.

Катушку возбуждения можно запитать от самого генератора, минус на от корпуса, а плюс от плюсового болтика. А в зубы ротора нужно поставить пару маленьких магнитиков для самовозбуждения. Для этого можно просверлить сверлом дырочки и на клей посадить маленькие неодимовые магнитики. Если нет неодимовых магнитов то можно вставить обычные ферритовые от динамиков, если маленькие, то просверлится и вставить, или проложить между когтей и залить эпоксидной смолой.

Так-же можно использовать так-называемую таблетку, то-есть реле-регулятор как в автомобиле, который будет отключать возбуждение если напряжение АКБ достигло14.2 вольта, чтобы не перезарядить. Ниже на рисунке схема самовозбуждения генератора. Вообще генератор сам возбуждается так-как ротор имеет остаточную намагниченность, но это происходит на высоких оборотах, лучше для надёжности добавить магниты. В схему включен реле-регулятор, но его можно исключить. Развязывающий диод нужен чтобы аккумулятор не разряжался так-как без диода ток будет течь в обмотку возбуждения (ротор).

Так-как ветрогенератор будет очень маленький с винтом диаметром всего 1 метр, то никакие защиты от сильного ветра не нужны и с ним ничего не случится если будет крепкая мачта и крепкий винт.

Есть генераторы на 28 вольт, но если их использовать для зарядки 12 вольт АКБ, то оборотов нужно в два раза меньше, около 600 об/м. Но так-как напряжение будет не 28 вольт, а 14, то катушка возбуждения будет давать только половину мощности и напряжение генератора будет меньше, по-этому ничего не получится из этого. Можно конечно попробовать в генератор, статор которого намотан на 28 вольт, поставить ротор на 12 вольт, тогда должно быть получше и зарядка начнётся раньше, но тогда нужны два одинаковых генератора чтобы заменить ротор, или искать отдельно ротор или статор.

Самодельный ветряк из тракторного генератора: использование запчастей от трактора и автомобиля

Обновлено: 4 мая 2019

Основная проблема, возникающая при самостоятельном изготовлении ветрогенератора — это устройство, непосредственно генерирующее ток. Самодельный генератор имеет довольно случайные рабочие параметры, так как даже тщательный расчет не позволяет учесть все тонкие эффекты. К тому же, получается слишком много величин, взятых приблизительно, что уменьшает точность расчетов.

Практика показывает, что для наиболее эффективной генерации тока лучше всего использовать готовые устройства, модифицированные для использования на ветряках. Рассмотрим вариант с применением тракторного и автомобильного генератора.

Генератор для ветряка за один день

Наиболее рациональным решением будет использовать готовый генератор, конструкция которого предназначена для выработки электрического тока. Единственной задачей в этом случае станет подгонка параметров устройства под условия работы от ротора ветряка, т.е. под определенную скорость вращения. Чаще всего это занимает совсем немного времени, что позволяет получить готовый генератор буквально за день.

Наиболее удачным и простым решением станет использование тракторного генератора, имеющего наиболее близкие характеристики и доступного для различных модернизаций конструкции.

Используем запчасти от трактора

Для того, чтобы генератор от трактора начал выдавать заявленную мощность, надо, чтобы ротор обеспечил довольно высокую скорость вращения — около 2000 об/мин (некоторые конструкции требуют 5-6 тыс. об.). При работе напрямую от крыльчатки это практически невозможно, требуется редуктор (как минимум, система шкивов).

Пониженная частота вращения требует изменения количества витков на обмотках. Они перематываются на большее число витков более тонким проводом (с обычных 63 витков мотают примерно 80). Также требует увеличения количества витков катушка возбуждения, которую обычно просто доматывают до большего количества (около 250 витков). Кроме того, надо отсоединить реле-регулятор напряжения, так как никакой нужды в не больше нет.

Такие изменения корректируют работу генератора и переводят его на меньший номинал скорости вращения. При этом, использование повышающей передачи все равно необходимо, так как простым увеличением числа витков проблема не решается.

Важно! Приведенное количество витков не является точным значением для любой марки генератора. Разные конструкции нуждаются в соответствующих объемах обмоток, которые подсчитываются отдельно. Иногда приходится действовать методом проб и ошибок, так как скорость вращения ветряка не имеет стабильного значения.

Существует еще один вариант использования тракторного генератора, когда на вал устанавливаются мощные постоянные магниты. В этом случае понадобится только усилить обмотки статора, модернизация обмоток электромагнитов становится не нужна. Рекомендуется использовать мощные неодимовые магниты, позволяющие создавать довольно высокое напряжение в обмотках статора при относительно низких скоростях вращения.

Ветрогенератор из магнето

Магнето имеет несколько иную конструкцию, чем тракторный генератор. Оно оснащено двумя обмотками, низкого и высокого напряжения. Вторая обмотка не нужна, так как вольтаж, который она способна выдавать, не подойдет для ветряка. Небольшое усиление скорости ветра вызовет резкий скачок напряжения, что может вывести из строя потребители или промежуточное оборудование. Поэтому вторичную обмотку демонтируют, а первичную перематывают на большую мощность, чтобы устройство способно было выдавать результат на низких оборотах.

Кроме этого, понадобится исключить участие прерывателя. Здесь действуют двумя методами:

  • физический демонтаж кулачка прерывателя;
  • установка между контактами замыкающей перемычки, обеспечивающей постоянное соединение.

Использование генератора от Еврокамаза

Использование генератора от Еврокамаза возможно при внесении небольших изменений. Конструкция такого устройства весьма близка к тракторной, но имеет более высокое напряжение и силу тока. Порядок модернизации узла такой же, перематываются обмотки и устанавливаются мощные магниты, создающие переменное магнитное поле.

Изначальная рабочая скорость вращения ротора слишком высока, поэтому потребуется увеличение количества витков на обмотках, позволяющее реагировать на малые значения скорости. После намотки рекомендуется присоединить генератор к источнику вращения (чаще всего используют электродрель) и замерить величину вырабатываемого тока. Такой предварительный замер позволит получить определенную информацию о параметрах полученного устройства и, по необходимости, внести некоторые изменения в конструкцию.

Ветрогенератор из тракторного генератора с однолопастным винтом

Умелец сделал из тракторного генератора Г700.04.01 вертикальный ветрогенератор своими руками для зарядки своих аккумуляторов снабдив его винтом с одной лопастью.

По задумке автора, ветрогенератором для зарядки аккумуляторных батарей выступает тракторный генератор.

Характеристики генератора Г700.04.01:
• Номинальное напряжение – 14V.
• Номинальный ток – 50А.
• Номинальная частота вращения – 5000 об/мин.
• Максимальная частота вращения – 6000 об/мин.
• Вес – 5,4 кг.

Тракторный генератор является высокооборотным агрегатом, им выдается зарядка для аккумулятора при больше чем 1000 об/мин, поэтому без переоборудования на ветряк он не подходит. Чтобы генератор был способен заряжать батарею в условиях низких оборотов, его пришлось дорабатывать.

Мастер перемотал статор – 80 витков для каждой катушки, используя провод 0,8 мм. Катушку возбуждения электромагнита автор перемотал и увеличил на 250 витков, применив такой же провод. Он дополнительно использовал 200 м провода, чтобы перемотать статор и домотать катушку.

Затем умелец сварил крепление для генератора, используя профтрубу, изготовил защиту от сильного ветра. Она выполнена в виде складывающегося хвостовика, одевающегося на шкворень.

Выбирая винт, автор решил в первую очередь создать конструкцию с двумя лопастями, диаметр винта – 1360 мм. Для лопастей использована алюминиевая труба с сечением 110 мм, которые были раскатаны. Длина каждой из них – 630 мм.

Мастер установил ветрогенератор на 5-метровую мачту. Он отбросил идею с токосъемными кольцами и пустил провод генератора внутри в трубе мачты.

Для фиксации мачты на высоте 4 м использованы тросовые растяжки.

Ветрогенератор начинает заряжать аккумулятор, если появляется скорость ветра достигает 3,5 м/с.
4 м/с – 300 об/мин.
7 м/с – 900 об/мин, генератор обеспечивает порядка 150 Ватт.
15 м/с – скорость вращения винта достигает 1500 об/мин, ветрогенератор выдает порядка 250 ватт. Эти параметры достаточны для того, чтобы зарядить автомобильный аккумулятор.

Для усовершенствования своей установки автор увеличивает обороты – он переделывает двухлопастный винт в винт с одной лопастью.
Винт с одной лопастью обладает таким преимуществом как высокий коэффициент использования энергии ветра. При одной и той же скорости ветра винт с одной лопастью вращается вдвое быстрее, чем трехлопастный винт.

Однако для изготовления однолопастного винта нужно провести непростую операцию – его балансировку. В противном случае из-за сильных вибраций подшипник генератора разрушится, преждевременно выйдет из строя.

Местом фиксации такого винта выступает трубка, на которой предусмотрен противовес. Работа конструкции заключается в принципе коромысла.
Крепление под балку лопасти автор приварил на генераторный шкив, в балке просверлил отверстие для шпильки М6. В крепление он вставил два ограничителя в виде шпилек, чтобы винт не задевал мачту.

На фото – крепление винта на шпильке М6, отклонение винта от оси может составлять 15 градусов.

Во время вращения однолопастный винт может отклоняться от оси. Таким образом он мягче реагирует на повороты установки.

В случае с ураганным ветром хвостовик происходит поворот хвостовика, он вырывает винт из потока воздуха.

Автор провел испытания конструкции и получил приличные результаты. В случае правильной балансировки винта вал генератора вращается существенно быстрее. В итоге генератором вырабатывается больше электроэнергии, даже если дует слабый ветер.

Ветрогенератор из тракторного генератора с самовозбуждением

Я сделал ветроустановку для жизни на даче и уже три года она меня полнустью устраивает. Хотя интерес работать в этом направлении остался. Жаловаться на дефицит времени можно до бесконечности но, к сожалению, это сдерживает. Сейчас на прогоне установка с тракторным генератором 1000 ватт с самовозбуждением. Есть пока проблемы но думаю устранятся.

Живу я в городе Гродно Республика Беларусь, среднегодовая скорость ветра 4.7 м/с по данным метеослужбы.

Данный материал выглядит в таком виде, с разрозненными комментариями, потому что в разное время обращались ко мне с просьбой поделится результатом и информацией, и по мере задаваемых вопросов я их допечатывал, чтобы они не повторялись. Да и не собирался опубликовывать данный материал на широкий суд. Но поддался порыву, ознакомившись с Вашим сайтом, чтобы помочь увлеченным людям, и « чтоб за державу обидно не было». Если данная работа поможет хоть одному человеку, это будет прекрасно.

Насчет количества лопастей, я для себя решил применять тихоходные ветроколеса с количеством лопастей не менее шести. Спокойствие и безопасность дороже. Я сделал поначалу трехлопастное трехметровое творение, и когда оно выходило на обороты домашние и соседи прятались по углам. По многочисленным просьбам домашних эта машина была демонтирована пожизненно.

Шестилопастной очень хорош и по быстроходности и по компактности. Монтаж и демонтаж занимает по минуте чистого времени, т.к. я его демонтирую когда уезжаю с дачи.

Использую отслуживший на машине аккумулятор емкостью 44 А/ч, но фактически навряд ли имеет емкость 30 % от номинала. Оборудование на даче все на12 вольт, Лампы дневного света с импульсными преобразователями, телевизор, приемники, эл. инструмент и т.д. В потреблении энергии не ограничиваемся, и даже если наблюдается повышенный разряд аккумулятора, то к утру он уже полностью заряжен.

Шестилопастный ветряк

Данная модель разработана специально как дачный вариант. Кабель от генератора спускается вниз внутри мачты. Токосъемные кольца не стал использовать. Практика показала, что большой потребности в них нет. Размеры на эскизе я не стал приводить, т.к. каждый делает из “подножного” материала. Расчетная часть подскажет, как использовать имеющиеся ресурсы. Правильность расчетной методики подтвердилась при эксплуатации данной конструкции. Прямые затраты у меня составили порядка 5 Евро.

Генератором служит электродвигатель на постоянных магнитах от привода ленточного накопителя ЭВМ СМ-2 болгарского производства с параметрами 300 Вт, 36 В, 1600 об/мин. Редуктор повышающий 1:12 (желательно 1:15). Мой редуктор, который я применяю в настоящий момент с текстолитовыми шестернями, не шумит, а ревизия ежегодная не показала признаков износа и поломок.

Лопасти – алюминиевый лист толщиной 2 мм. Алюминиевый лист сгибается в желобок со смещением оси на угол 10 градусов. Крепится к стальной втулке с резьбой. Наворачивается на шпильку с резьбой и после балансировки, которую исполняют путем накручивания глубже или мельче на шпильку, контрогаится.

Узел поворота, выполненный на подшипниках, смещен относительно оси ветроколеса чтобы обеспечить увод из под сильного ветра. Хвост ветроколеса установлен шарнирно и подпружинен. Силу пружины можно регулировать.

Вот, в общих чертах и все. Сейчас работаю над низкооборотным генератором. Если Вы можете сказать что-то интересное по этому вопросу, пишите на электронную почту.

Чтобы не повторятся, буду отвечать на возникающие вопросы по мере поступления, и, если для кого-то они будут не интересны, то пропускайте. И буду рад, если кому-то они помогут, т.к. в свое время мне было трудно найти ответы, казалось, на очень простые вопросы. Поэтому, то, что знаю, постараюсь пояснить.

1. Для чего нужен складывающийся хвост? При возрастании скорости ветра усиливается давление на плоскость ветроколеса (в расчетах на 21 строке давление ветра вычисляется). Благодаря смещенному центру вращения ветроколеса относительно крепления к мачте, установка стремится уйти из под ветра , а хвост выполняя роль стабилизатора удерживает его по ветру. И только когда сила давления ветра на ветроколесо превысит силу растяжения пружины, конструкция начинает складыватся. Конкретно у меня на 1.6 метровом настроено на давление 16 – 17 кгс что соответствует 9 – 10 м/с после чего начинается увод из под ветра и мощность стабилизируется. При буревых порывах осуществляется увод из-под ветра.

Схема электрическая.
(Для просмотра крупным масштабом щелкните здесь)

2. Может ли винт при хорошем ветре пойти в разнос? Может если оставить установку без подключенной нагрузки. Поэтому ветроустановка должна быть всегда подключено к устройству управления.

3. Использовали ли тормозную систему для винта? В данном 1.6 метровом варианте используется элктротормоз. Постараюсь пояснить работу устройства управления (схема принципиальная прилагается). Состоит из двух модулей. Модуль на ОУ2 импульсный стабилизатор напряжения с ограничителем по току настроенном на максимальный ток равный 10 процентам емкости аккумулятора. Напряжение на выходе стабилизатора = 14.2 В. Модуль на ОУ1 – импульсный коммутатор нагрузки. Он вступает в работу при появлении напряжения на входе порядка 18 В. Вырасти оно может до этого значения, если потребители и заряд аккумулятора не выбирают производимую в данный момент мощность. Тогда коммутатор подключает в ключевом импульсном режиме резистор нагрузки, который выбирается с таким расчетом, чтобы обеспечить отбор максимальной мощности от генератора. Плавно переменным резистором снижая напряжение на выводе 4 ОУ1, открываем полевой транзистор Т4 и подключенной нагрузкой останавливаем ветроколесо.

12 лопастный ветряк

С 20.12.2005 года установлен на прогон. Диаметр 3.1 метра. Редуктор 1:40. Генератор с самовозбуждением 28 В, 1000 Вт.

Евгений Васильевич снял небольшой видоролик в формате AVI. Не забудьте включить звук в проигрывателе.

Самодельный ветрогенератор из генератора от трактора

Ветрогенератор из генератора Г 700 от трактора: фото сборки с описанием переделки тракторного генератора.

В качестве ветрогенератора для зарядки аккумуляторов автор решил использовать тракторный генератор.

Генератор Г 700 имеет следующие характеристики:

  • Номинальное напряжение – 14V.
  • Номинальный ток – 50А.
  • Номинальная частота вращения – 5000 оборотов в минуту.
  • Максимальная частота вращения – 6000 оборотов в минуту.
  • Масса – 5,4 кг.

Сам по себе тракторный генератор высокооборотный, выдаёт зарядку на аккумулятор при более 1000 оборотов в минуту, для ветряка он конечно без переделки не подойдёт. Поэтому генератор понадобилось доработать чтобы он мог заряжать аккумулятор при более низких оборотах ротора.

Статор был перемотан по 80 витков на каждую катушку проводом 0,8 мм, катушка возбуждения электромагнитов перемотана и увеличена на 250 витков таким же проводом. Дополнительно было использовано 200 метров провода (на перемотку статора и домотку катушки).

Было сварено крепление под генератор из профильной трубы, сделана защита от ураганного ветра — складывающийся хвостовик который одевается на шкворень.

При выборе винта, было решено изготовить сначала двухлопастную конструкцию с диаметром винта 1360 мм. Лопасти вырезаны из алюминиевой тубы сечением 110 мм, и раскатаны, длина каждой лопасти по 630 мм.

На фото: ветроустановка автора.

Ветрогенератор установлен на мачту высотой 5 метров, здесь автор отказался от токосьемных колец, провод генератора пущен внутри трубы мачты.

Мачта закреплена растяжками из троса на высоте 4 метра.

Процесс зарядки аккумулятора ветрогенератором уже начинается при скорости ветра 3,5 м/с.

4 м/с – 300 об/мин.

7 м/с – 900 об/мин, генератор выдаёт около 150 Ватт.

15 м/с – скорость вращения винта достигает 1500 оборотов в минуту, и ветрогенератор выдаёт около 250 ватт. Таких показателей вполне хватает для зарядки автомобильного аккумулятора.

Далее автор решил усовершенствовать свою установку и увеличить обороты переделкой двухлопастного винта в однолопастный.

Преимущество винтов с одной лопастью в их высоком коэффициенте использования энергии ветра, однолопастный винт при одинаковой скорости ветра вращается в два разы быстрее чем винт с 3 лопастями.

Но изготовить однолопастный винт не так, то просто, его нужно правильно отбалансировать, иначе сильные вибрации быстро разрушат подшипник генератора, что приведёт к его преждевременной поломке.

Лопасть такого винта закреплена на трубке с противовесом и вся конструкция работает по принципу коромысла.

На фото показан противовес.

Крепление под балку лопасти приварено прямо к шкиву генератора, в балке просверлено отверстие под шпильку М6. В креплении вставлены две шпильки ограничители, чтобы винт не цеплял мачту.

На фото показано крепление винта на шпильке М6, винт может свободно отклоняться от оси на 15 градусов.

При вращении винт с одной лопастью может отклоняться от оси что позволяет ему более мягко реагировать на повороты ветроустановки.

При ураганном ветре хвостовик поворачивается и вырывает винт из воздушного потока.

Конструкция опробована автором и показала хорошие результаты, при правильной балансировке винта скорость вращения вала генератора значительно увеличивается, соответственно и генератор вырабатывает больше энергии даже при слабом ветре.

Ветрогенератор своими руками для частного дома

«Нам электричество сделать всё сумеет …» — так пели студенты электротехнических ВУЗов середины прошлого века. В этой юмористической «оде» электричеству отведено много фантастики, но сегодня мы можем с уверенностью сказать, что современный человек без электричества просто пропал бы. Если свечи и могли бы нам заменить «лампочку Ильича», то как быть со всем остальным?

К настоящему времени человеком открыты разные способы получения электрического тока:

  • гальванические элементы, в которых химическая энергия преобразуется в электрическую;
  • термогенераторы, в которых в электричество преобразуется тепловая энергия;
  • солнечные батареи, где в электроэнергию преобразуется солнечная энергия.

Каждый из таких источников имеет свои достоинства и недостатки. Однако преимущественное распространение получили генераторы, в которых механическая энергия преобразуется в энергию переменного электрического тока. Это так называемые индукционные генераторы, действие которых основано на явлении электромагнитной индукции.

Немного истории и теории

Вспомним немного школьный курс физики, из которого нам известно, что явление электромагнитной индукции было открыто в 1831 году английским физиком Майклом Фарадеем. А заключается оно в следующем: при всяком изменении магнитного потока, пронизывающего замкнутый проводящий контур, в этом контуре возникает электрический ток.

То есть в простейшем виде такой генератор выглядит как рамка, помещенная в поле постоянного магнита, вращающаяся под действием механической силы. Однако такой тип генератора переменного тока с неподвижной магнитной системой (индуктором) и вращающимися витками проводника (якорем) применяется очень редко. Связано это с тем, что для отведения тока от движущейся катушки требуются подвижные контакты, а при токе высокого напряжения в таких контактах будет иметь место сильное искрение. Поэтому в подавляющем большинстве индукционных генераторов переменного тока обмотку (якорь), в которой наводится ток, делают неподвижной и называют статором, а вращают магнитную систему (индуктор), который называют ротором. В мощных генераторах магнитное поле создают обычно с помощью электромагнита, питаемого от источника постоянного тока — возбудителя.

Однако с появлением магнитов из сплава неодим-железо-бор, которые по своим характеристикам значительно превосходят другие виды постоянных магнитов, появилась возможность изготавливать ротор генератора на основе постоянных магнитов. Неодимовые магниты, разработанные в 70–80-е годы прошлого века, отличаются высокими и стабильными магнитными свойствами при малых размерах.

Теперь несколько слов о механической энергии, которую генератор преобразует в электричество. Для вращения ротора генератора используются энергия воды (гидрогенераторы), энергия пара (парогенераторы). Существуют генераторы, работающие от дизельных и бензиновых двигателей внутреннего сгорания. Забота же об окружающей среде и об экономии собственных средств заставила человека вспомнить о таком «неутомимом работнике» как ветер. С незапамятных времен люди использовали энергию ветра для движения кораблей и для превращения зерна в муку. Современные ветряные двигатели для электрогенераторов ведут свою родословную именно от ветряных мельниц. Соединив ветряной двигатель (ветряк) с электрогенератором, изготовленным с применением современных магнитов, получим ветрогенератор на неодимовых магнитах — экологически безопасный и экономичный источник электрической энергии.

Чем хорош ветрогенератор

Сегодня даже заядлый скептик не будет оспаривать пользу этого вида источников переменного тока.

Конечно, величины напряжения, мощности и тока, полученных от генератора для ветряка, сделанного своими руками не позволят запитать все электроприборы в достаточно большом загородном доме. Но вот снабдить электричеством небольшой дачный домик, особенно если он расположен далеко от электрической сети, вполне рациональное решение. И даже если только часть потребляемой электроэнергии для дома вы получите от ветряка, то в перспективе экономия будет ощутимой.

Кроме того, сделать генератор для ветряка — это интересная творческая работа, выполнив которую вы по праву сможете гордиться собой.

Из чего состоят ветрогенераторы и какие они бывают?

Обязательными элементами такого ветрогенератора на магнитах являются:

1)    Мачта, на которой установлены ветровое колесо и генератор. Ее высота выбирается исходя их конкретных природных условий и потребностей человека.

2)    Двигатель для ветряка — ветровое колесо с лопастями, которое преобразует движение ветра во вращательное движение вала ротора генератора.

3)    Генератор, вырабатывающий переменный электрически ток, величина которого зависит и от параметров статора и ротора генератора, и от скорости вращения ветрового колеса, дающего движение ротору.

Кроме того в состав системы могут входить ряд вспомогательных устройств, обеспечивающих управление работой системы и улучшающие качество получаемого тока: контроллер, аккумуляторные батареи, преобразователи, стабилизаторы.

В зависимости от направления оси вращения различают два типа ветрогенераторов — вертикальные и горизонтальные.

Горизонтальные (пропеллерные) имеют больший КПД, но они более сложны по конструкции, так как включают систему, ориентирующую пропеллер по ветру. Изготовление таких ветрогенераторов сложнее, а работают они только при достаточно больших скоростях ветра. Кроме того, ветряки с горизонтальной осью вращения требуют достаточно большого пространства, а модели с вертикальной осью вращения значительно компактнее.

Вертикальные ветряки проще по конструкции, дешевле, но их КПД ниже.

Но обратимся к сердцу любого ветряка — электрогенератору переменного тока, ротор которого выполнен на неодимовых магнитах.

Как собрать генератор на магнитах

Собираем ротор

Ротор такого магнитного ветрогенератора конструктивно представляет собой сборку из двух стальных дисков, расположенных параллельно друг другу. Диски жестко скреплены между собой через распорную втулку и установлены на валу, вращение которого обеспечивает турбина ветряка. Можно рекомендовать сделать ротор из автомобильной ступицы в сборе с тормозными дисками. Это надежная и хорошо сбалансированная основа для ротора. Дешевле будет взять б/у ступицу. В этом случае ее необходимо разобрать, тщательно почистить, проверить и смазать подшипники. Можно диски для ротора изготовить самостоятельно из низкоуглеродистой стали. Конечно, можно взять и другой материал, но следует учесть, что при использовании немагнитного материала эффективность генератора значительно снижается.

По периметру каждого диска располагаются магниты. Какие магниты нужны для ветрогенератора? Можно взять дисковые, прямоугольные, но наилучший эффект дают неодимовые магниты-сектора. Их размер и количество могут быть разными в зависимости от вашей цели и возможностей. Однако число пар полюсов магнитов должно быть четным, причем для однофазного генератора их должно быть столько же, сколько и катушек в статоре, а для трехфазного — четыре или две пары на три катушки. Магниты по периметру диска устанавливаются с чередованием полюсов: N–S–N–S…. Для этого предварительно следует изготовить шаблон, где точно обозначить место каждого магнита.

Размеры дисков ротора рассчитываются, исходя из размеров магнитов и их количества. Толщина диска для ротора должна быть порядка толщины магнита.

Магниты приклеиваются к диску суперклеем, а затем диск заливается эпоксидной смолой. Чтобы избежать ее стекания по внутренней и наружной окружности диска делаются бортики из скотча, пластилина или другого подручного материала. Перед тем, как залить диск эпоксидкой рекомендуем пометить на каждом диске по магниту, полюса которых направлены встречно, чтобы затем не перепутать при сборке. При сборке генератора следует следить за тем, чтобы магниты на дисках ротора располагались точно напротив и были направлены противоположными полюсами друг к другу. Схематический чертеж ротора ветряка с распределением магнитных силовых линий представлен на рис. 1.

 

Рис. 1

Изготовление статора ветрогенератора

Теперь сформированное магнитное поле нужно преобразовать в электричество. Для этого служит статор — неподвижная обмотка из медного провода, расположенная так, чтобы силовые магнитные линии, образуемые магнитами ротора, при его вращении пересекали провода обмотки.

Статор генератора располагается в зазоре между дисками ротора. Состоит он из неподвижных плоских катушек без сердечников. В каждой катушке при пересечении силовыми линиями магнитного поля возникает ЭДС индукции, переменная по величине и направлению. Величина напряжения, значит, и эффективность ветрогенератора, зависят от скорости вращения ротора, от количества витков в каждой катушке, от числа самих катушек и диаметра медного провода, используемого для их изготовления.

Генератор может быть однофазным или трехфазным. Первый проще, но второй предпочтительнее по двум причинам. Во-первых, в ветряке с трехфазной схемой генератора отсутствуют вибрации, которыми в нагруженном состоянии грешит однофазный. Кроме того, трехфазный генератор эффективнее однофазного более чем в 1,5 раза.

Расчет числа и параметров катушек для ротора ведется исходя из числа магнитов, их ширины, выбранного соотношения 4/3, или 2/3 и диаметра провода.

Если для обмотки взять тонкий провод, то катушки статора можно намотать с большим количеством витков, напряжение на выходе генератора будет более высоким, но его нагрузочная способность ниже. При использовании более толстого провода с меньшим сопротивлением в зазоре для статора поместятся обмотки с меньшим числом витков, в результате выходное напряжение будет ниже, но выше нагрузочная способность. Форма катушек определяется формой магнитов, а оптимальной толщиной статора считается величина, равная толщине магнитов. Число витков каждой катушки получается делением общего числа витков обмотки на число катушек, а общее число витков обмотки статора определяется, исходя из ЭДС, величины магнитной индукции, средней скорости вращения ротора.

Намотав катушки, их раскладывают на предварительно подготовленном шаблоне с размеченными секторами, соединяют между собой в зависимости от выбранной схемы. В однофазном варианте все катушки соединяются между собой последовательно. При этом нужно учесть, что токи в соседних катушках будут иметь противоположные направления, поэтому соединяются начало с началом соседней, а конец с концом следующей. Провода от начала первой и конца последней катушек выводятся наружу. При трехфазном варианте между собой соединяются каждая третья катушка. Провода каждой фазы выводятся наружу и впоследствии соединяются звездой или треугольником. Схемы соединения обмоток генератора представлены на рис. 2.

Рис. 2

Для прочности под катушки и на них кладется стеклоткань, и вся конструкция заливается эпоксидной смолой. После ее застывания сверлятся отверстия для крепежных болтов.

Оба диска ротора устанавливаются на валу с двух сторон от статора на расчетном расстоянии, на передний диск ротора крепится ветроприемное устройство.

Заглянем в будущее

Человеческая мысль не стоит на месте и самые распространенные сегодня горизонтальные ветрогенераторы постепенно уступают свое место вертикальным. Связано это с появлением технологии магнитной левитации, или так называемых ветрогенераторов на магнитной подушке. В такой конструкции лопасти крыльев при малых габаритах максимально используют энергию ветра, то есть КПД тут будет значительно выше.

Первенство в применении этой технологии принадлежит китайцам, но сейчас во многих странах мира инженеры работают над созданием мощных ветрогенераторов с магнитной левитацией, позволяющих осуществить переход к источникам возобновляемой энергии в промышленном масштабе.

Ветрогенератор на постоянных магнитах своими руками.

 

Аксиальный 20-ти полюсной ветрогенератор

Ветрогенератор аксиального типа на основе готовой ступицы и трехфазного генератора, который содержит 15 катушек, намотанных проводом 0.7 мм по 70 витков. Ротор данного генератора имеет 20 пар магнитов размером 20 на 5 мм, а толщина статора равна 8 мм. В этой модели используется двухлопастной винт и система защиты от сильного ветра.

Материалы и агрегаты использованные для постройки данного ветрогенератора:


1) автомобильная ступица
2) эпоксидная смола
3) металлические уголки
4) магниты размером 20 на 5 мм в количестве 40 штук
5) труба 20
6) суперклей
7) вазелин
8) ступица от прицепа "зубренок"
9) фанера
10) ламинат 8 мм
11) провод толщиной 0.7 мм

Рассмотрим более подробно основные этапы постройки и особенности конструкции данной модели ветрогенератора.

Для начала автор занялся намоткой катушек для статора. Чтобы облегчить данный процесс автор изготовил специальное приспособление:

 


Для его изготовления автор использовал трубу диаметром 20 мм, таким образом она как раз подходит под размеры магнитов. Автор решил изготовить катушки толщиной 7 мм.
Еще одно изображение самодельного станка для намотки катушек:

 

 


Автор отмечает, что благодаря данному станку, собранному из подручных материалов, намотка катушек прошла без особых трудностей. Главное мотать катушки виток к витку давая несильную натяжку для того, чтобы витки плотнее прижимались друг к другу.

 

 


Итак, автор приступил к изготовлению катушек для генератора. Для того, чтобы катушки не развалились после намотки автор промазывал их клеем для пластика, а так же дополнительно обернул оконным скотчем. Для намотки катушек автор использовал провод толщиной 0.7 мм по 70 витков на каждую катушку. Хотя после конечной сборки автор решил, что нужно было делать по 90 витков, это позволило бы выиграть по напряжению.

 


Далее была изготовлена форма для заливки статора. Автор решил сделать форму на подложке из фанеры. Для этого на фанеру была нанесена разметка, которая позволит более точно разместить катушки. Средняя часть формы сделана из ламината толщиной 8 мм. Для того, чтобы эпоксидная смола не приставала к форме, автор смазал ее вазелином, это позволит затем легко извлечь статор из заготовки после затвердевания эпоксидной смолы.

Для проводов были сделаны специальные канавки при помощи болгарки.

 


При заливке статора автор использовал стеклосетку, чтобы увеличить прочность статора. Уложив стеклосетку с каждой стороны статора, автор через заранее просверленные отверстия притянул крышку и оставил статор остывать.

 

Катушки статора были соединены пофазно, все шесть проводов от фаз были выведены по канавкам наружу, после чего провода были замазаны пластилином для того, чтобы смола не вытекала. В последствии автор соединил фазы звездой.

 


На следующий день статор был извлечен из формы, и автор слегка обработал края для ровности. Магниты на дисках автор так же решил залить эпоксидной смолой для большей надежности.

На фотографиях ниже можно рассмотреть, как была выполнена поворотная ось ветрогенератора:

 

 

Основой для изготовления поворотной оси послужила автомобильная ступица. Для того, чтобы защитить будущий ветрогенератор от слишком сильного ветра автор использовал стандартную конструкцию увода от ветра путем складывания хвоста. Важно заметить, что ветроголовку необходимо вынести минимум на 100 мм, иначе защита от ветра не будет работать так как ось генератора будет расположена слишком близко к поворотной оси.
Так же к конструкции был приварен штырь под углом в 20 градусов и на 45 градусов относительно винта, на этот штырь одевается хвост ветрогенератора.

Рассмотрим конструкцию ступицы генератора.


За основу самого генератора была взята ступица от прицепа "Зубренок". Автор использовал неодимовые магниты размером 20х5 мм. На каждый диск ушло по 20 магнитов. Ступица была закручена через пластину, на которую прикреплены уголки. Статор генератора будет держаться на шпильках.

Далее автор приступил к изготовлению дисков с магнитами.
Магниты были прикреплены на диски при помощи суперклея. Для того, чтобы сделать все максимально точно автор изготовил шаблон из картона. Так же важно заметить, что магниты должны клеиться с чередованием полюсов, таким образом, чтобы на генераторе диски с магнитами притягивались.

 

 


Ниже можно рассмотреть, как именно был закреплен хвост ветрогенератора, который будет защищать его от сильного ветра:

 

На фотографии ветроголовка была размещена слишком близко к поворотной оси ветрогенератора, что в последующем было выявлено на испытаниях и устранено. Однако само крепление хвоста и углы наклона верные. После доведения конструкции до ума, она отлично себя проявила: при усилении ветра винт отворачивается, а хвост складывается и поднимается вверх.

 

 


Автор решил сделать для начала двухлопастной вариант винта для своего генератора. Лопасти были изготовлены из ПВХ трубы. Так же был сооружен кожух, который будет закрывать генератор от дождя.

Затем генератор был собран и покрашен. После покраски автор решил испытать работу генератора. От руки удалось раскрутить генератор до 30 вольт с силой тока кз 4.5 А.

 

 

 
 
Данный генератора работает на 3 светодиодные ленты по 25 ватт каждая, но в будущем автор планирует более серьезно подойти к расчету винта для генератора и подключить аккумулятор.

статья взята с сети интернет: http://usamodelkina.ru/

Следите за новостями!

Генератор на неодимовых магнитах

 

Магнитный генератор

Магнитный двигатель – это реально бесплатный генератор энергии, который может эффективно заменить подключение от локальной электрической сети, и не требует сложной разработки, нужно только купить магниты. Форум электриков утверждает, что таким образом можно создать бесшумный источник тока.

Фото — Магнитный генератор

Он работает по принципу мощных неодимовых постоянных магнитов. Когда магнитная сила достигает необходимого уровня, чтобы преодолеть трение, скорость двигателя направляется на пандусы, значение доходит до равновесия. В обычном двигателе, магнитное поле возникает от электрических катушек, которые как правило, состоят из меди (Cu), а иногда алюминия (Al).

Поскольку медь и алюминий не являются сверхпроводниками (их сопротивление не равно нулю), обычный электродвигатель должен непрерывно производить электроэнергию для поддержания магнитного поля и компенсации потерь. Этому построению сложно работать из-за высоких показателей потерь.

В магнитной конструкции не нужны катушки самоиндукции, поэтому он работает практически без потерь. Магнита  использует постоянное магнитное поле, в котором генерируется сила движущегося ротора. Недостатком магнитов является то, что он не может управлять потоком. Вы не сможете переключить магнит на резистор или реле. Но преимуществ намного больше, чем недостатков:

  1. Низкая себестоимость;
  2. Отличные показатели работоспособности;
  3. Практически нет потерь электроэнергии.

Инструкция по сборке магнитного генератора с фото

Практическую модель этого генератора легко построить самостоятельно. Все, что вам нужно, это подходящий набор неодимовых магнитов. Очень маленькие неодимовые магниты можно найти даже в компакт-дисках или DVD фокусирующей системе.

Простейший самодельный механический генератор энергии подходит для генерации низких и средних уровней свободной мощности. Максимальная выходная величина значительно выше, чем максимум электрического контура энергии. При более легкой конструкции, чем электромагнитный прибор, мы получаем аналоговый асинхронный генератор.

Для генерации полезной электроэнергии, есть два варианта:

  1. 1.Использование мотков электродвигателя в качестве основы магнитного движка. Такой домашний прибор гораздо проще в конструировании, но в таком случае мотор должен иметь достаточно места для набора магнитов и обмотки катушек (при необходимости намотка осуществляется самостоятельно), для работы на дисбалансе.
  2. 2.Подключить к магнитному двигателю электрогенератор. Вы можете напрямую связывать валы или использовать зубчатую передачу. Второй вариант генератора способен генерировать больше энергии, но его сложно сконструировать.

Рассмотрим самостоятельный способ сборки.

Вентилятор компьютера может быть использован для создания небольшого прототипа магнитного генератора свободной энергии.

Фото — Компьютерный радиатор как двигатель

Фото — Вентилятор от компьютера в разборке

Изначально катушки используются для создания магнитного поля. Мы можем заменить катушки неодимовыми магнитами. Магниты должны быть помещены в тех же направлениях, в которых расположены исходные катушки. Это гарантирует, что ориентация магнитного поля, необходимая для работы двигателя, остается такой же. В этом двигателе, есть четыре катушки, поэтому нужно использовать четыре магнита.

 

Фото — Катушки Фото — Подключение неодимовых магнитов к катушке

Магниты, расположены в направление катушек. Двигатель работает из-за образовавшегося МП, он не нуждается в электроэнергии. Меняя направление магнитов, Вы можете изменять скорость вращения двигателя, соответственно и его энергию.

Фото — Правильное расположение магнитов

 

Фото — Поворот магнитов и работа двигателей

Эти генераторы свободной энергии – вечные, двигатели будут работать до тех пор, пока из цепи не уберется какой-то магнит. Если собрать такой мотор в домашних условиях из более мощного радиатора, то электричества хватит для питания лампочки или даже нескольких бытовых приборов (до 3 кВт), просто Вам понадобится прикрепить к устройству провода, которые будут передавать ток к потребителю электроэнергии.

Следите за новостями!

p.s.  в статье использованы материалы с источников сети интернет

Генераторы на постоянных магнитах PMG

Аварийный регулятор превышения скорости

Производитель и экспортер аварийного регулятора скорости. В наш ассортимент также входят Генераторы с постоянными магнитами и Двигатели с постоянными магнитами.

Благодаря искренности и усердной работе наших экспертов, мы заняли нишу в этой области, предоставив Emergency Overspeed Governor . Команда опытных профессионалов производит эти продукты, используя сырье высшего качества и современные технологии, чтобы продолжить установленные отраслевые ценности.Чтобы обеспечить безупречную доставку с нашей стороны, предлагаемые нами товары проходят тщательную проверку. Этот диапазон обычно признан нашими клиентами за некоторые из его замечательных особенностей.

Характеристики :

  • Точная конструкция
  • Безупречная отделка
  • Прочность

Описание продукта:

Одна из самых серьезных проблем, связанных с ветроэнергетикой, - это непредсказуемый характер ветра. Даже на самых лучших ветряных участках, с устойчивым ветром с достаточно высокой скоростью, есть колебания скорости и направления ветра, которые влияют на способность ветряной турбины вырабатывать мощность.Более крупные системы ветряных турбин имеют сложные системы управления, которые автоматически отслеживают изменения направления и скорости ветра и регулируют ориентацию турбины, шаг лопастей и зубчатую передачу генератора для поддержания желаемой электрической мощности. Небольшие турбинные системы, как правило, намного менее сложны, однако они, как правило, все же имеют некоторую форму управления для увеличения их долговечности и выработки энергии.

Основными задачами контроллера в ветроэнергетической системе являются (в порядке приоритета):

  • Предотвращение повреждения нагрузки
  • Максимальная мощность к ветряной турбине
  • Предотвратить производство

Здесь мы сосредоточимся на небольших ветряных турбинах, которые мы определим несколько произвольно как системы мощностью 20 кВт или меньше.Такие небольшие системы в прошлом в основном проектировались с учетом прочности, с надежными механическими средствами управления и относительно скромными общими характеристиками. Однако с развитием микроконтроллеров и электронных компонентов для переключения мощности уровень сложности этих малых ветряных систем неуклонно повышается.

http://permanentmagnetgenerator.net
[email protected]
Г-н Гурмит Сингх
+ 91-9811980116
F-2636 Палам Вихар
Гургаон-122017
Индия Безщеточный генератор постоянного магнита

- Генератор постоянного магнита 400 Гц

Генератор с постоянным магнитом, 400 Гц

Обеспечивает чистый и надежный источник номинальной мощности 400 Гц.Встроенное регулирование обеспечивает отличную стабильность напряжения и частоты. Исключительная наработка на отказ при минимальном обслуживании. Компактный и тихий.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
  • 400 Гц Выход
  • от 1500 до 3600 об / мин
  • Номинальная мощность: от 150 ВА до 3 кВА
  • Тип двигателя: Индукционный
  • Тип генератора: Возбуждение от постоянных магнитов
  • Форма волны: THD менее 4%
  • Типичная продолжительность жизни 10+ лет

Щелкните здесь для Series 30 - 0.От 15 до 3 кВА Таблица

СЕРИЯ 30 - от 0,15 до 3 кВА
МОДЕЛЬ ОДНОФАЗНЫЙ ВЫХОД ВХОД Габаритный чертеж
Номер кВА Фаза Частота тока Напряжение Фаза Частота Напряжение Номер
Низкий диапазон Высокий диапазон
30-021 0.15 1 400 115 1,3 1 60 100-130 200-240 23-010
30-001 0,25 1 400 115 2,2 1 60 100-130 200-240 23-010
30–270 0.40 1 400 115 3,5 3 60 200-240 440-480 23-010
30-002 0,50 1 400 115 4,3 1 60 100-130 200-240 23-010
30-003 1.00 1 400 115 8,7 1 60 100-130 200-240 23-573
30-012 1,00 1 400 115 8,7 3 60 200-240 440-480 23-573
30-013 1.50 1 400 115 13,0 3 60 200-240 440-480 23-573
30-028 1,50 1 400 115 13,0 1 60 100-130 200-240 23-573
30-008 3.00 1 400 115 26,1 3 60 200-240 440-480 23-573
МОДЕЛЬ ТРЕХФАЗНЫЙ ВЫХОД ВХОД Габаритный чертеж
Номер кВА Фаза Частота Напряжение Ампер Фаза Частота Напряжение
Wye Delta Wye Delta Low Range High Range
30-004 0.25 3 400 115/200 115 0,72 1,25 1 60 100-130 200-240 23-010
30-005 0,50 3 400 115/200 115 1,45 2,5 1 60 100-130 200-240 23-010
30-016 0.50 3 400 115/200 115 1,45 2,5 3 60 200-240 440-480 23-010
30-006 0,75 3 400 115/200 115 2,2 3,8 3 60 200-240 440-480 23-010
30-299-1 0.75 3 400 115/200 115 2,2 3,8 3 60 115 дельта 23-1091-1
30-018 1,00 3 400 115/200 115 2,9 5,0 3 60 200-240 440-480 23-573
30-025 1.00 3 400 115/200 115 2,9 5,0 1 60 100-130 200-240 23-573
30-019 1,50 3 400 115/200 115 4,3 7,5 3 60 200-240 440-480 23-573
30-026 1.50 3 400 115/200 115 4,3 7,5 1 60 100-130 200-240 23-573
30–154 1,50 3 400 120/208 120 4,2 7,2 3 60 200-240 440-480 23-584
30–185 1.50 3 400 115/200 115 4,3 7,5 3 60 200-240 23-638
30-007 2,00 3 400 115/200 115 5,8 10,0 1 60 100-130 200-240 23-573
30-020 2.00 3 400 115/200 115 5,8 10,0 3 60 200-240 440-480 23-573
30-029 2,50 3 400 115/200 115 7,2 12,5 3 60 200-240 440-480 23-573
30–287 2.50 3 400 139/240 н / д 6,0 н / д 3 60 200-240 440-480 23-573

КОНСТРУКЦИЯ ВЫСОКОСКОРОСТНОГО ПОСТОЯННОГО МАГНИТА СИНХРОННЫЙ ДВИГАТЕЛЬ / ГЕНЕРАТОР ДЛЯ ПРИМЕНЕНИЯ МАХОВИКА

1 ВЫСОКОСКОРОСТНОЙ ПОСТОЯННЫЙ МАГНИТ СИНХРОННЫЙ ДВИГАТЕЛЬ / ГЕНЕРАТОР ДЛЯ ПРИМЕНЕНИЯ МАХОВИКОВ Александр Нагорный, к.D. Национальный исследовательский совет

2 Краткое описание Введение Выбор расчетной точки Основные требования к маховику M / G в космических приложениях Соответствие проектным требованиям Выбор основных материалов M / G Выбор толщины слоения Инструменты моделирования M / G Процесс предварительного проектирования Выбор материала постоянного магнита Аналитический дизайн RMxprt Выходной якорь Расчет реакций и размагничивания M / G 2D конечно-элементное моделирование M / G 3D конечно-элементное моделирование Заключительные наблюдения и рекомендации Ссылки Благодарности

3 Введение Конструкция двигателя / генератора является частью работы, выполняемой в Исследовательском центре Гленна НАСА, посвященной разработке модулей маховика для использования в системах хранения энергии и ориентации спутников.Преимущества модуля маховика в качестве накопителя энергии в космических аппаратах по сравнению с химическими батареями заключаются в следующем: более высокая плотность энергии и мощности, большая глубина разряда, более широкий диапазон рабочих температур. Маховик можно использовать в качестве источника импульса для управления ориентацией, что дает возможность объединить две спутниковые подсистемы в одну и уменьшить общий объем и массу.

4 Выбор номинального значения Определение выходной мощности Определение выходной мощности основано на профилях нагрузки во время циклов нагрузки.С t = до t = 6 мин - это заряд (режим двигателя), с t = 6 до t = 9 мин - разряд (режим генератора). В каждой точке чистый крутящий момент M / G равен T net = T ES + T AC, где T ES - составляющая крутящего момента, необходимая для накопления энергии, а T AC - составляющая, необходимая для управления ориентацией. Крутящий момент, Нм Определение выходной мощности комбинированного накопителя энергии и регулировки положения маховика Время цикла, мин Крутящий момент Tes Полезный крутящий момент Момент переменного тока Выходная мощность Выходная мощность, Вт

5 Основные требования к маховику M / G в космических приложениях Относительно высокая электрическая частота напряжений и токов Высокая удельная мощность Высокая эффективность, низкие общие потери Низкие гармонические искажения в форме сигнала обратной ЭДС Низкие значения крутящего момента малые потери ротора Высокая термическая стойкость, способность работать в вакууме без интенсивного охлаждения

6 Соответствие конструктивным требованиям Высокая удельная мощность: правильный выбор конфигурации M / G Применение материалов с постоянными магнитами с высокой магнитной энергией Применение материалов для ламинирования сердечника с высокой проницаемостью Высокая эффективность, низкие общие потери: выбор синхронной машины с постоянными магнитами переменного тока с нулевой Магнитные и проводящие потери ротора основной частоты Применение материалов для ламинирования сердечника с низкими удельными потерями Применение многожильных проводов тонкого диаметра для проводов якоря статора для снижения высокочастотных потерь на скин-эффект

7 Соответствие конструктивным требованиям (продолжение) Низкий коэффициент нелинейных искажений на кривой обратной ЭДС и низкое значение крутящего момента от зубчатого зацепления.Это может быть достигнуто за счет уменьшения высокочастотных пространственных гармоник ММЧ следующими способами: Сделать дуги полюсов магнита короткими. Двухслойная обмотка статора с коротким шагом. Перекос сердечника статора в осевом направлении. Относительно большой немагнитный зазор; Малая величина отношения раскрытия паза к шагу паза Специальная форма зубьев статора (фиктивные пазы) Расслоение постоянных магнитов в осевом направлении

8 Соответствие проектным требованиям (продолжение) Низкое значение потерь в роторе: Основные составляющие потерь в роторе: Обратные потери в стали; Потери на вихревые токи в материале постоянного магнита; Потери втулки из углеродного волокна M / G; Потеря ветра.Первые три составляющие потерь в роторе вызваны высокочастотными пространственными гармониками МДС. Меры по их сокращению такие же, как описано на предыдущем слайде. Эффективной мерой против потерь в железной задней части является ламинирование сердечника в задней части.

9 Соответствие конструктивным требованиям (продолжение d) Высокая термическая стойкость: Высокая термическая стойкость может быть достигнута за счет использования соответствующих материалов для деталей статора и ротора: Материалы для ламинирования сердечника статора и ротора Изоляция проводов Изоляция пазов Изоляция частей обмотки Изоляция выводов двигателя Материалы постоянного магнита Ротор из углеродного волокна.В текущей конструкции M / G все материалы, кроме композитного углеродного волокна, имеют номинальную температуру выше 2 ° C.

10 M / G Выбор основных материалов Использование перспективных материалов Основными материалами двигателя, которые могут повлиять на характеристики двигателя, являются следующие ферромагнитные материалы сердечника материалы постоянных магнитов изоляция обмотки магнитных проводов Ферромагнитные материалы сердечника Две основные характеристики ферромагнитных материалов сердечника могут влиять на двигатель производительность максимальная плотность потока насыщения удельные потери

11 Инструменты моделирования Для предварительного проектирования двигателя используется программное обеспечение Ansoft Corporation RMxprt.Преимущества программного обеспечения RMxprt следующие: Возможность получить простой и быстрый ответ в удобной форме. Выходные данные могут быть легко экспортированы в другое программное обеспечение Ansoft (Maxwell 2D, Simplorer). Программа может выполнять оптимизацию входных параметров

.

12 M / G Предварительный процесс проектирования Были выполнены многочисленные итерации проектирования для удовлетворения требований двигателя в режиме двигателя и генератора.Различные конфигурации ротора, материалы постоянного магнита и сердечника, а также геометрия M / G были оптимизированы с использованием режима параметрического анализа RMxprt. Наивысший уровень выходной мощности в сочетании с относительно низким уровнем гармонических искажений обратной ЭДС был получен для дугообразного магнита поверхностного монтажа

.

13 Выбор материала постоянного магнита Выходная мощность M / G в режиме генератора для различных материалов PM W SmCo 24 SmCo 28 NdFe 3 NdFe 38 Тип материала магнита Группа NdFe имеет более высокую остаточную намагниченность и произведение энергии.SmCo имеет лучшие тепловые характеристики.

14 Выбор толщины ламинирования Удельные потери, Вт / кг Удельные потери железа в зависимости от толщины ламинирования для высоконасыщенного сплава кобальт-железо при 12 Гц и 2 T y = xx R 2 = Толщина ламинирования, дюймы При высоких частотах (1,2 кГц) и высокой плотности потока (2. T) удельные потери в железе пропорциональны квадрату толщины ламинации.Для уменьшения потерь в стали толщина ламинации должна иметь низкое значение (в нашем случае 4).

15 Аналитический дизайн RMxprt Выходные данные СТАТОРА Количество пазов статора: Внешний диаметр статора (дюйм): Внутренний диаметр статора (дюйм): Длина сердечника статора (дюйм): Количество проводников на слот: Параметры M / G при номинальных точка Номинальная выходная мощность (кВт): Номинальное напряжение (В): Число полюсов: Частота (Гц): Рабочая температура (C): Режим двигателя: Режим генератора ДАННЫЕ РОТОРА Немагнитный зазор, дюйм Внутренний диаметр (дюйм): Длина ротора ( дюймов): THD наведенного напряжения (%): Крутящий момент (Н.м): Линейный ток RMS (A): КПД (%): Синхронная скорость (об / мин): Макс. Толщина магнита (дюйм): 27 Номинальный крутящий момент (Н-м): Тип магнита: SmCo Общий вес нетто (фунты):

16 Аналитическая расчетная мощность RMxprt Выходная мощность (продолжение) Крутящий момент, Нм Момент зубчатого зацепления Электрический угол, мощность в градусах, Вт Выходная мощность в зависимости от угла крутящего момента, градусы КПД в зависимости от угла крутящего момента Ток в зависимости от угла крутящего момента Угол крутящего момента, град

17 Аналитический расчет RMxprt в зависимости от распределения плотности потока в воздушном зазоре (RMxprt) Распределение плотности потока в воздушном зазоре..2 "от поверхности маннетов Плотность потока FEA, TB, T Электрический угол, градусы Положение в воздушном зазоре, дюйм Распределение плотности потока в воздушном зазоре, 0,53" от поверхности магнитов FEA 1.2 Распределение плотности потока в воздушный зазор, 0,2 дюйма от отверстия статора FEA. 8.8 B, TB, T Положение в воздушном зазоре, дюймы Положение в воздушном зазоре, дюймы FEA показывает более высокую плотность магнитного потока в воздушном зазоре, чем RMxprt

18 Частота, Гц M / G Частота Время, мин. M / G Ток якоря Время, мин. Ток, A Мощность, Вт Аналитический расчетный расчет RMxprt Выход (продолжение) M / G Выходная мощность Время, мин. M / G Напряжение Исследование M / G Характеристики во время рабочего цикла Напряжение, потеря напряжения, Вт КПД,% времени, мин. Общее время потери M / G.мин M / G Время эффективности, мин

19 Расчет реакции якоря и размагничивания Br t α Br (ϑ ϑ) = Brs ts Hc α Hc (ϑ ϑ) t = Hc sts Самарий Кобальт (спеченный) S2769 Линии размагничивания при различных температурах C 2 C 1,8 Br, T Hc, A / м Кривые размагничивания постоянных магнитов чувствительны к температуре

20 Расчет реакции якоря и размагничивания (продолжение) Стандартный метод проверки размагничивания постоянных магнитов из-за реакции якоря описан в T.Книга Дж. Миллера [1]. Недостатком этого метода является предположение, что полюс постоянного магнита имеет равномерное насыщение. Φ m Fa Кривая размагничивания постоянного магнита hm = 0,3 дюйма Φ r P m Φ LRL Φ g Rg B, TH, A / m Φ r = B r AMR g = µ g A g B m = 1 + Pr 1 (1 + P m RR gg B) r B g C Br (1+ PR) = Φ mg C = Φ AA mg PC = µ rec 1 + PP m r1 RR gg B ma µ µ F = rec dem Bload = Bm Bma lm H m = B r Bm µ µ rec P mo = µ µ l rec m A m

21 Расчет реакции якоря и размагничивания (продолжение) Более точным способом проверки размагничивания является метод FEA.Используя программу расчета переходных процессов Maxwell 2D, необходимо определить решение для номинальной нагрузки. Определяются относительное положение ротор-статор и мгновенные значения фазных токов. Затем, используя положение и значения, полученные с помощью решателя переходных процессов, можно создать 2D магнитостатическую модель Максвелла и определить распределение плотности потока в постоянных магнитах.

22 Расчет реакции якоря и размагничивания (продолжение d) Линии потока в двигателях и векторах плотности потока без реакции якоря Ia =

23 Расчет реакции якоря и размагничивания (продолжение) Ia = 387 A Из-за реакции якоря уровень размагничивание в углу полюса магнита выше, чем в других областях магнита.

24 Расчет реакции якоря и размагничивания (продолжение) Ia = 581A Зависимость плотности потока постоянного магнита от тока якоря 1.8 Bm av 2 CB m corn 2 C.6.4 B, T Ток фазы A, A Среднее значение плотности магнитного потока в магните все еще намного больше нуля, но угловая область магнита размагничена

25 M / G 2D конечно-элементное моделирование Более точное решение M / G характеристик можно найти с помощью конечно-элементного анализа. Таким образом, точность результатов, полученных программным обеспечением RMxprt, может быть проверена. Переходная модель конечных элементов включает в себя ротор и сердечник статора, проводники, вал, магниты, прокладки между магнитами и кольцо из углеродного волокна.Таким образом, все составляющие потерь ротора могут быть определены с хорошей точностью.

26 M / G 2D конечно-элементное моделирование (продолжение) Использовался решатель двухмерных переходных режимов Maxwell с пошаговым подходом по времени. Учитываются эффекты насыщения, вихревых токов, пазов, положения ротора и пространственных гармоник. Из-за использования двухслойной обмотки с коротким шагом, когда два слоя обмотки имеют угловое смещение, в этой машине отсутствует зеркальная симметрия.Таким образом, не было возможности использовать симметрию ведущего ведомого устройства. Для исследования характеристик M / G были применены два разных подхода: источники синусоидального напряжения и источники синусоидального тока. Оба метода показывают одинаковые результаты для моторных характеристик. После решения переходного процесса магнитостатический решатель использовался для проверки значения крутящего момента, разработанного для указанных значений тока.

27 M / G 2D конечно-элементное моделирование (продолжение) Tav = 1.645 Нм

28 M / G 2D конечно-элементное моделирование (продолжение) Центры потерь на вихревые токи Pav = 8,1 Вт Потери на вихревые токи были рассчитаны для постоянных магнитов, кольца из углеродного волокна и прокладок между магнитами. P = l 1 σ J JdA A Где σ - проводимость материала, l - глубина петли вихревого тока в направлении Z, A - площадь поверхности, J - плотность тока. Можно заметить, что пики потерь на вихревые токи находятся под щелевыми отверстиями. Значение локальной плотности вихревого тока зависит от мгновенного значения тока в ближайшей щели.

29 M / G 3D конечно-элементное моделирование. Наклон паза статора вызывает силу в осевом направлении, которая может повлиять на работу магнитных подшипников. Для определения значения этой силы использовалась следующая методика. 1) С помощью программы Maxwell 2D Transient Solver можно найти относительное положение ротора и статора и мгновенные значения фазных токов. 2) Используя эти значения положения и токов, была создана 3D-магнитостатическая модель Максвелла и определены значения силы в зависимости от фазных токов с учетом эффекта перекоса.

30 M / G 3D конечно-элементное моделирование (продолжение d) Сила в осевом направлении, вызванная перекосом паза, в зависимости от фазового тока 12 Сила, ток N, 3D-модель учитывает двухслойную обмотку и перекос паза

31 G3 Маховик M / G Конструкция На основе представленных результатов проектирования M / G как часть нового модуля маховика G3 был полностью спроектирован, и прототип планируется изготовить в этом году.

32 Заключительные наблюдения и рекомендации Ansoft RMxprt, Maxwell 2D и 3D - мощные инструменты для проектирования электрических машин.Некоторые предложения по упрощению использования этих программ приведены ниже. 1. Было бы полезно как часть выходов RMxprt для синхронных двигателей с постоянными магнитами и генераторов показывать кривую размагничивания магнитов (с нагрузкой и без нагрузки). линии), линейку продуктов энергии и векторную диаграмму номинальной точки машины. 2. Моделирование высокочастотной синхронной машины с постоянным магнитом в переходном режиме требует относительно небольших временных шагов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *