Генератор из асинхронного двигателя своими руками без переделки: Асинхронный электродвигатель в качестве генератора

Содержание

Как сделать генератор двигатель своими руками

Генератор 220 из асинхронного двигателя - YouTube

Как самостоятельно сделать генератор из асинхронного двигателя?

Как сделать генератор переменного тока своими руками из асинхронного ...

Как сделать генератор из асинхронного двигателя (видео, схема 220В)

Магнитный двигатель своими руками

Вечный двигатель .Motor Generator - YouTube

Как сделать генератор переменного тока своими руками из асинхронного ...

Генератор из асинхронного двигателя своими руками - как сделать и . ..

Генератор из асинхронного двигателя - YouTube

Как сделать генератор - виды и способы изготовления

Как сделать генератор переменного тока своими руками из асинхронного ...

Простой ветрогенератор своими руками из двигателя постоянного тока ...

Как превратить любой асинхронный двигатель в генератор. Делаем ...

Как сделать самодельный генератор из асинхронного двигателя |

ДВИГАТЕЛЬ СТИРЛИНГА С ГЕНЕРАТОРОМ СВОИМИ РУКАМИ HOMEMADE HOT AIR ...

Как сделать генератор для ветряка к примеру из асинхронного дв

БЕЗТОПЛИВНЫЕ ГЕНЕРАТОРЫ. Как сделать своими руками (Схемы ...

Ветряк из автомобильного генератора без переделки - Автономный дом

Генератор своими руками - инструкция, как сделать простой ...

Как превратить любой асинхронный двигатель в генератор. Делаем ...

Стационарный генератор на 380 вольт своими руками Часть 6 - YouTube

Генератор для велосипеда из шагового двигателя | Мастер-класс своими ...

Шаговый двигатель как генератор ветрогенератора (ветряка ...

Велосипедный педальный генератор большой мощности

АЛЬТЕРНАТИВНЫЕ РЕШЕНИЯ - RU: ИМПУЛЬСНЫЙ МАГНИТНЫЙ ДВИГАТЕЛЬ СВОИМИ . ..

Генератор из асинхронного двигателя своими руками в домашних условиях

Генератор из асинхронного двигателя своими руками

Generator.mp4 - YouTube

Генератор электрической энергии для апокалипсиса (конца света ...

Генератор из асинхронного двигателя своими руками | Самоделки своими ...

Как сделать ветрогенератор своими руками

Генератор из асинхронного двигателя своими руками - как сделать и ...

Переделать асинхронный двигатель в генератор своими руками: какие ...

Как сделать ветряную электростанцию своими руками \u2014 Rmnt. ru

Секрет бестопливного генератора из двух электродвигателей ...

Автомобиль на водородном топливе своими руками + видео

Генератор своими руками - подробная инструкция как спроектировать и ...

Мини турбина (генератор) своими руками

Бензогенератор своими руками | Строительный портал

Бензогенератор своими руками из двигателя бензокосы | Самоделки ...

Стенд для ремонта генераторов своими руками

Как сделать самодельный генератор из асинхронного двигателя | Дизайн ...

Низкооборотный генератор Белашова своими руками.

Генератор для ветряка своими руками

Генератор на 220 вольт своими руками: фото, описание, видео испытаний

Генератор на постоянных магнитах. Как сделать. Подробно. - YouTube

Бензогенератор своими руками | Строительный портал

Вечный двигатель: история попыток изобрести генератор, который будет ...

Автомобильный генератор в качестве генератора для ветрогенератора ...

Самодельный генератор. Все способы своими руками

Мотор-Генераторы, Ротоверторы - RealStrannik.com

Самоделки из бензопилы: что можно сделать, генератор, лебедка, бур . ..

Бензиновый генератор с двухцилиндровым двигателем / Техника ...

Генератор своими руками - инструкция, как сделать простой ...

Переделываем асинхронный двигатель под генератор для ветряка

Как сделать самодельный генератор из асинхронного двигателя | Дизайн ...

Ветрогенератор 12 вольт своими руками

Самодельный ветряк с генератором из коллекторного электродвигателя

АЛЬТЕРНАТИВНЫЕ РЕШЕНИЯ - RU: ИМПУЛЬСНЫЙ МАГНИТНЫЙ ДВИГАТЕЛЬ СВОИМИ ...

Как превратить любой асинхронный двигатель в генератор. Делаем ...

Коллекторный Мотор-Генератор Канарева Ф. М. и команды - Практика и ...

Генератор из асинхронного двигателя своими руками

Установка генератора на лодочный мотор - 12 вольт в лодке \u2022 Личные ...

Проверка возможностей автомобильного генератора в качестве ...

Электромобиль Ваз-2106. Как переделать классику на электротягу ...

Бензогенератор своими руками: инструкция изготовления 32 фото

Автомобильный генератор переделываем в е- мотор 2 - YouTube

Генератор для сварки

Ветрогенератор 200 Ватт своими руками

Как самостоятельно сделать генератор из асинхронного двигателя?

Как сделать генератор из кулера. Технология изготовления ветряка из ...

Электрогенератор своими руками в домашних условиях: чертежи и ...

Вечный двигатель за 2 минуты

Секрет бестопливного генератора из двух электродвигателей ...

Генератор из кулера и магнитов вырабатывает электричество \u2014 правда ...

Как сделать бензогенератор своими руками на 220 вольт и что для ...

Как сделать генератор из асинхронного двигателя - пошаговая ...

Генератор из асинхронного двигателя своими руками - как сделать и ...

Электромоторы без противо-ЭДС - Энергетика и промышленность России - № 08 (124) апрель 2009 года - WWW.

EPRUSSIA.RU

Газета "Энергетика и промышленность России" | № 08 (124) апрель 2009 года

Во время вращения барабанов они постоянно перемагничиваются. В определенные моменты у них нет магнитных свойств, и тогда они дружно падают друг на друга. При дальнейшем повороте барабанов пластины вновь намагничиваются и отталкиваются друг от друга, приподнимаясь в воздух.

Сообщалось, что при полетах этих пластин они оказывают ровно такое же воздействие на барабаны, как и если бы они (пластины) были друг к другу приклеены. И как бы даже понятно почему.

Автор таким образом рекламировал свой «вечный двигатель», в котором опускавшиеся друг на друга грузы производили полезную работу.

При просматривании тем на различных форумах, посвященных попыткам построения электромотора без противо-ЭДС, мне пришла идея, что этот механизм можно использовать для достижения искомого эффекта применительно к мотору. Как именно?

Принцип вращения

Пусть пластины на рисунке являются ротором и статором мотора. Если вместо вращения барабанов использовать электромагнитное возбуждение, то перед нами – простейший иллюстрационный макет нового принципа. Остается лишь перевести этот принцип в реальный электродвигатель.

В показанном устройстве пластины двигаются возвратно-поступательно, и это не подходит для мотора, где два реагирующих объекта должны двигаться друг относительно друга только в одну сторону. Поэтому применим другой вариант расположения с соблюдением указанного принципа.

Мотор в этом варианте включает в себя цилиндр из не проводящего ток, прозрачного для магнитного поля материала, внутри которого закреплены пластины из магнитомягкого материала, и ротор, на котором параллельно оси также закреплены подобные пластины. Они выполняют роль полюсов. Для наведения в пластинах магнитного поля используем обмотку, которую навиваем на цилиндрическом корпусе мотора.

Работает агрегат так. Когда полюса статора и ротора находятся почти друг против друга, на обмотку подаем напряжение. Магнитное поле катушки намагничивает полюса, но намагничивает не так, как на современных моторах, по направлению силовых линий магнитного поля вдоль диаметра мотора, а по‑иному: силовые линии располагаются в полюсах параллельно оси мотора. Намагниченные полюса отталкиваются, и ротор начинает вращение. Как только полюса ротора окажутся между двумя статорными полюсами, убираем напряжение – до тех пор, пока они вновь не приблизятся к другим полюсам. Таким образом, периодически подавая и убирая напряжение на обмотку возбуждения, можно достичь непрерывного одностороннего вращения вала мотора.

Для того чтобы убрать периоды, когда вращению вала будет способствовать только инерция ротора, можно применить два аналогичных мотора, работающих на один вал, в которых периоды движения по инерции на одном моторе совпадали бы с периодами движения под воздействием поля на другом моторе. В этом случае магнитные поля, выходя из полюсов, должны попадать в воздух, у которого магнитная проницаемость очень маленькая, что приводит к их рассеиванию и вслед за этим – сильному снижению КПД мотора. Поэтому разработчики промышленного варианта могут воспользоваться предлагаемым ниже примером, где магнитное поле обмотки возбуждения доставляется непосредственно к полюсам мотора с использованием магнитопровода.

Промышленный вариант

В этом варианте используется несколько катушек с магнитопроводами. Концы магнитопроводов заканчиваются кольцом непосредственно там, где сходятся полюса ротора и статора. Кольцо охватывает весь тот участок, где полюсные наконечники находятся на самом минимальном расстояний друг от друга.

В таком варианте должна оставаться неизменной индуктивность катушки возбуждения независимо от оборотов ротора, так как неизменной остается площадь сердечника обмотки возбуждения. Магнитная проницаемость и количество силовых линий магнитного поля, проходящих по сердечнику при цикле работы, тоже не меняется. (Электродвижущую силу самоиндукций мы в расчет не берем).

При таком варианте конструкции электромотора не будет возникать и противо-ЭДС в обмотке возбуждения, приводящего в обычных моторах к ограничению оборотов электромотора при том или ином напряжении. То есть такой мотор будет после включения разгоняться до тех пор, пока центробежные силы не приведут к механическому разрушению конструкций.

Указанный вариант принципа предполагает только взаимное отталкивание статора и ротора. Можно проверить работоспособность предлагаемого мною механизма. Вставьте два гвоздя в катушку рядом друг с другом вместо сердечника и подайте на катушку напряжение. Гвозди друг от друга оттолкнутся – то есть принцип работает. В сети Интернет автор выложил видео этого опыта.

Важное уточнение: современные двигатели используют другой принцип, при котором эти «гвозди» засунуты в катушку не рядом, а последовательно, и при подаче на катушку напряжения они, наоборот, притягиваются.

В этом разница между вариантами. Отличительной чертой механизмов является то, что намагниченные полюса двигаются как бы внутри обмотки возбуждения и при работе их поля никак не воздействуют на катушку – они взаимодействуют только между собой. То есть мы посторонним источником магнитного поля возбуждаем в моторе магнитное поле, и оно самостоятельно, не влияя на внешнее поле и его источник, начинает производить работу по отталкиванию друг от друга статора и ротора мотора.

Поможет сверхпроводимость

Такого эффекта мы добиваемся, применяя пластинки из магнитомягкого материала. Какими еще способами можно получить этот результат? Можно использовать вместо пластин из магнитомягкого материала короткозамкнутые контуры или такое уникальное явление, как сверхпроводимость.

Берем круглый контур большого диаметра – он будет у нас играть роль контура возбуждения. Внутри его же плоскости располагаем два маленьких короткозамкнутых кольцеобразных контура – рабочих.

Подаем на контур возбуждения переменное напряжение. Его магнитное поле тут же возбуждает в рабочих контурах ток. Естественно, при появлении тока вокруг них возникает магнитное поле. Все три контура своими полями взаимодействуют друг с другом, в результате чего рабочие контуры притягиваются к контуру возбуждения и одновременно с этим отталкиваются друг от друга. С приближением к контуру возбуждения отдельного рабочего контура его поле вызывает в нем токи, которые в сумме не дают большого кругового тока. То есть соответственно не возникает и большой противо-ЭДС в контуре возбуждения.

Но нам нужно создать на основе всех этих фактов мотор, в котором будет вообще уничтожена любая противо-ЭДС.

Как это сделать?

Общий принцип построения этого мотора таков. В нем есть неподвижный контур возбуждения, внутри которого располагаются рабочие короткозамкнутые обмотки. Одну из них можно сделать неподвижной относительно контура возбуждения, превратив в статорную короткозамкнутую обмотку, а другую расположить на вращающемся роторе.

Кроме того, можно сделать ось мотора составной! В результате одна сторона мотора будет вращаться в одну сторону, а другая половина в другую – при этом каждая половина вращается одним из рабочих контуров.

Работает такой мотор следующим образом. В момент, когда рабочие контуры находятся рядом друг с другом, на контур возбуждения подаем напряжение. В случае использования сверхпроводимости можно подать постоянный ток. В рабочих контурах тут же возникает электрический ток и связанное с ним магнитное поле, в результате чего они отталкиваются друг от друга и начинают двигаться по кругу. В момент, когда они удаляются друг от друга на максимальное расстояние, напряжение убираем, катушки по инерции идут дальше и приблизятся друг к другу. Их необходимо расположить на статоре и роторе так, чтобы они могли пройти друг подле друга не соприкасаясь и находиться как можно ближе к одной плоскости. Как только они перестанут перекрываться – следует вновь подать импульс напряжения на обмотку возбуждения.

Цикл повторяется до достижения постоянного вращения ротора. При любых оборотах ротора подача на обмотку возбуждения тока вызывает, посредством магнитного поля, аналогичные вихревые токи в рабочих обмотках, величина которых с ростом оборотов не меняется!

В варианте с обмотками в качестве рабочих элементов не удается полностью убрать противо-ЭДС, но это не должно помешать построению мотора с обмотками, имеющего недостижимый в обычных моторах КПД, точнее – коэффициент преобразования энергии.

В чем ноу-хау?

Специалисты поняли наверно, что главная хитрость, позволяющая добиться уничтожения противо-ЭДС в рассмотренных двигателях, – это не непосредственная подача питающего тока в обмотки якоря и ротора, а возбуждение его в последних с использованием внешнего источника магнитного поля.

Так же и в варианте с намагничивающимися и отталкивающимися друг от друга полосками из магнитомягкого материала – это не непосредственное возбуждение магнитного поля намотанными на них обмотками, а использование внешнего коммутируемого источника магнитного поля.

Автору представляется, что точно таким же способом после небольшой переделки можно будет нейтрализовать противо-ЭДС и в используемых ныне электродвигателях. А какие перспективы будут у обновленных двигателей, думаю, объяснять не нужно. Это, в первую очередь, построение принципиально новых источников дешевой энергии с помощью магнитного поля.

Всем известно, что механическая мощность, вырабатываемая на валу электромотора, прямо пропорциональна крутящему моменту на валу, помноженному на циклическую частоту вращения ротора. То есть с чем большими оборотами вращается вал электромотора, тем большая механическая мощность выделяется на нем. Поэтому мы должны как можно больше раскрутить вал, чтобы получить как можно большую механическую энергию. Обычные моторы для достижения этого должны потреблять все большую и большую электрическую мощность, которая все же меньше, чем вырабатываемая ими механическая мощность, так как с увеличением оборотов на обычном двигателе появляется противодействующая источнику питания электродвижущая сила, для нейтрализации которой необходимо все время повышать питающее напряжение, то есть – потребляемую электрическую мощность.

Построенные на новом принципе моторы могут достичь любых оборотов без дополнительного повышения питающего напряжения, так как не будет возрастающей с повышением оборотов противодействующей источнику питания электродвижущей силы и, значит, не требуется повышения питающего мотор напряжения – читайте: мощности. К тому же часть энергии, израсходованной для питания мотора, можно будет вернуть посредством ЭДС самоиндукций (которую не следует путать с противо-ЭДС).

Проверим на практике

Для проверки – на самом ли деле двигающиеся вдоль контура возбуждения рабочие пластины ротора не будут наводить ЭДС, противодействующей дальнейшему нарастанию оборотов мотора, – был проведен следующий опыт.

На катушке диаметром около 100 миллиметров была намотана обмотка из 300 витков провода диаметром 0,2 миллиметра. На концах загнутых Г-образных проводов нужным образом были приклеены два отталкивающихся друг от друга магнита. Эти магниты были введены в контур.

Два этих магнита аналогичны намагниченным пластинам из магнитомягкого материала, отталкивающимся друг от друга и двигающимся вдоль обмотки возбуждения в работающем моторе.

Если бы в обмотке возбуждения мотора поля этих пластин наводили какую‑то противо-ЭДС, ограничивающую обороты мотора, то в контуре двигающиеся вдоль обмотки магниты аналогично наводили бы ЭДС. Возможные наводки проверялись с применением осциллографа, настроенного на самую большую чувствительность. Осциллограф при вводе и выводе магнитов из катушки показывал явное наличие ЭДС. Но если Г-образные оси с магнитами располагались на оси катушки и затем магниты вначале прижимались друг к другу, а затем отпускались и двигались вдоль обмотки – то, как и следовало ожидать, никаких наводок осциллограф не показывал. Это подтверждает уверенность автора в том, что представленный им принцип построения электромоторов без противо-ЭДС совершенно реален.

Ветрогенератор из асинхронного двигателя своими руками: пошаговые инструкции

Полезные приспособления /07-апр,2014,00;16 / 60717
Ранее мы уже рассматривали как сделать простой ветрогенератор, исходя из популярности даной темы, предлагаем создать ветрогенератор из асинхронного двигателя. Необходимо немного переделать электродвигатель, как это сделать читаем далее.

Как сделать ветрогенератор своими руками из асинхронного двигателя

Чтобы сделать генератор для ветрогенератор, мы воспользуемся асинхронным двигателем.

Чтобы изменить двигатель, надо проточить ротор для магнитов, приклеить магниты к ротору и залить эпоксидкой. Кроме того, статор надо перемотать проводом с большей толщиной, дабы понизить показатель напряжения, увеличить ток. Но двигатель мы решили оставить нетронутым, выполнить лишь переделку ротора. Мы воспользовались агрегатом трехфазного типа, мощность его составляет 1,32 киловатт.


Выполняется проточка ротора мотора на токарном станке. Отметим, что в случае данного ротора мы не пользовались гильзой, которая надевается обычно под магниты. Ее наличие объясняется необходимостью усилить магнитную индукцию, магнитами через гильзу замыкаются поля, не происходит рассеивания магнитного поля, все направляется в сторону статора. Данная система предполагает использование весьма сильных магнитов, размер которых составляет 7,6x6 миллиметров. Берется 160 штук, с их помощью обеспечивается достаточная электродвигательная сила и без гильзы.




Первоначально, прежде чем наклеивать магниты, ротор размечается на 4 полюса, выполняется расположение магнитов со скосом. У двигателя было четыре полюса, из-за того, что не происходило перематывания статора, должны присутствовать 5 магнитных полюсов. Выполняется чередование каждого полюса, «южного» и «северного». Полюсам необходимы определенные паузы, магниты здесь располагаются более плотно. После того, как мы разместили магниты, они заматывались с помощью скотча, фиксировались эпоксидкой.

Ротор залипал, ощущалась также проблема в процессе валового вращения. Мы внесли некоторые изменения, удалили магниты и смолу, после чего выполнили новое размещение элементов. При этом упор был сделан на большую равномерность при установке. Выполнив заливку, мы поняли, что залипание стало менее заметным, кроме того, напряжение в процессе вращения генаратора на одинаковых оборотах стало меньше, показатель тока чуть-чуть увеличился.


Мы собрали ветрогенератор и решили прикрепить к нему то или иное приспособление. Решено было прикрепить лампу на 60 ватт и 220 вольт, на оборотах от 800 до 1000 она накаливалась полностью. Кроме этого, чтобы проверить возможности, мы прикрепили лампочку, мощность которой составляет 1киловатт. Обеспечен был половинный уровень нагревания. При 800 оборотах в минуту уровень напряжения составлял 160 вольт. Помимо этого, мы попытались выполнить подключение кипятильник на 0,5 киловатт, очень быстро вода нагрелась.

Рассмотрим подробно винт. Материалом для лопастей выступала поливинилхлоридная труба, диаметр которой равен 160 миллимеров. На фотографии можно увидеть винт, его диаметр составляет 1,7 метра, здесь представлена информация, исходя из которой, выполнялись лопасти.
Несколько позже мы сделали стойку, у которой есть поворотная ось, позволяющая прикреплять хвост и генератор. У системы схема, при которой ветровая головка уходит от ветра с помощью хвостового складывания. Именно поэтому здесь есть определенное смещение от осевого центра системы, при заднем расположении штырька (шкворня, предназначенного для хвоста).

Мы прикрепили ветрогенератор своими руками к мачте, длина которой равняется девять метров. Генератором обеспечивалось напряжение холостого хода, которое достигало 80 вольт. Мы попытались выполнить подключение двухкиловаттного тенна, через определенный промежуток времени он нагрелся, соответственно, можно сделать вывод о наличии определенной мощности у ветряка.

Затем мы собрали специальный контроллер, после чего выполнили подключение с его помощью аккумулятора к зарядке. Обеспечен неплохой показатель по току, появился шум, подобный тому, как происходит при использовании зарядных приспособлений.


В соответствии с данными на электромоторе, показатели были равны 220-380 вольт, при силе тока от 6,2 до 3,6 ампер, соответственно, показатель сопротивления агрегата равняется 35,4ом треугольник/105,5 Ом звезда. В случае двенадцативольтного аккумулятора, заряжающегося по такой схеме, как «треугольник» (самый частый вариант), то получится, что при скорости ветра от 8 до 9 метров в секунду ток составляет около 1,9 ампер, что равняется всего-навсего 23 ватт в час.
Настолько существенное падение объясняется высоким уровнем сопротивления генератора, именно по этой причине выполняется перемотка статора проводом более существенной толщины, благодаря этому гарантируется уменьшение сопротивления агрегата, от чего зависит и показатель силы тока.

Надеемся наша инструкция как создать ветрогенератор для дома своими руками из асинхронного двигателя вам поможет сделать ветрогениратор.

Генератор из асинхронного двигателя своими руками. Как переделать асинхронный двигатель в генератор


Чтобы посмотреть этот PDF файл с форматированием и разметкой, скачайте его и откройте на своем компьютере.

Генератор из асинхронного двигателя своими руками. Как переделать
асинхронный двигатель в генератор

Сделать генератор из асинхронного двигателя своими руками несложно, но придется постараться и потратить
некоторые средства на приобретение комплектующих. Но для проведения работ необходимо знать
некоторые тонкости. В частности, принципы работы асинхронного

двигателя переменного тока, изучить
основные элементы его конструкции. Главное в генераторных установках

это движение магнитного поля.
Оно может обеспечиваться путем вращения якоря при помощи двигателя внутреннего сгорания либо
ветряной установки. Также

возможно использование альтернативных источников

силы воды, пара и пр.

Конструкция асинхронного двигателя

Можно выделить всего несколько элементов:

1.

Статор с обмоткой.

2.

Передняя и задняя крышки с установленными

подшипниками.

3.

Ротор с короткозамкнутыми витками.

4.

Контакты для подключения к электрической сети.

Если задуматься, то может показаться, что очень просто переделать двигатель в генератор, фото которого вы
можете детально рассмотреть. Но если разобраться боле
е тщательно, то окажется, что не все так и просто,
подводных камней предостаточно. Статор состоит из множества металлических пластин, прижатых плотно
друг к другу. Также они обработаны лаком, в некоторых конструкциях, для придания прочности, все пластины
п
риварены друг к другу. На статоре намотан провод, он плотно прилегает к сердечнику и изолирован от него
при помощи картонных вставок. В крышках расположены подшипники, с их помощью производится не только
более легкое прокручивание ротора, но и его центриро
вание.

Принцип работы двигателя

Суть всего процесса заключается в том, что магнитное поле образуется вокруг статорной обмотки. Оно
достаточно мощное, но не хватает г
лавного компонента

движения. Поле статическое, неподвижное, а
главное условие в генераторных установках

это вращение, изменение направления силовых линий. В случае
с двигателем все достаточно просто

имеется ротор, который изготовлен из металла. Внутр
и несколько
витков очень толстого кабеля. Причем все витки замкнуты, соединены между собой. Получается принцип
простого трансформатора. В короткозамкнутых витках индуцируется ЭДС, которое создает в окружающем
пространстве переменное магнитное поле. Получае
тся, что теперь все есть для того чтобы появилось
движение. Под действием сил происходит вращение ротора электрического двигателя. Такой тип машин
обладает хорошими характеристиками, а конструкция проста и надежна, ломаться нечему. По этой причине
асинхрон
ные двигатели получили широкое распространение в промышленности. Более 95% всех моторов на
заводах и фабриках

это асинхронные. Изготовить генератор своими руками, схема которого не очень
сложная, может каждый при наличии минимальных знаний.

Подключение к

однофазной сети

Истинной проблемой становится подключение электродвигателя, рассчитанного на три фазы, к одной.
Принцип генератора немного отличается, но для его понимания нужно рассмотреть и процесс мотора.
Необходимо использование емкости, которая позво
лит сделать сдвиг фазы в нужную сторону. Причем
существует несколько схем, используемых на практике. В одних конденсатор применяется только в момент
запуска, в других и при работе. Включается пусковая емкость на короткий промежуток времени, до
достижения н
еобходимых оборотов. Контактирует она через выключатель параллельно одной из обмоток,
соединенных по схеме треугольник.

У таких вариантов подключения имеется один существенный недостаток

снижение мощности
электродвигателя. Можно получить от него ка
к максимум 50
-
процентную отдачу. Следовательно, при
мощности мотора 1,5 кВт, в случае питания от однофазной сети, вы сможете получить лишь половину

0,75
кВт. Это накладывает определенные неудобства, так как приходится использовать более мощные
электродви
гатели.

Как получить три фазы из одной

Для более удобного использования электрических асинхронных двигателей необходимо питание от трех фаз.
Но провести к себе домой такую сеть сможет не каждый, также возникают трудности с учетом
электроэнергии. Поэтому пр
иходится выкручиваться, как получается. Проще всего установить частотный
преобразователь. Но его стоимость высокая, не каждый способен выделить такую сумму для собственного
гаража или мастерской. Поэтому приходится применять подручные средства. Вам потребу
ется асинхронный
двигатель, конденсатор и автотрансформатор. В качестве последнего можно использовать самодельное
устройство, изготовленное из сердечника электродвигателя. Можете даже сделать чертеж генератора, чтобы
упростить работу по сборке.

На него тре
буется намотать около 400 витков провода. Диаметр его около 6 кв. мм. Для точности требуется
сделать десять отводов, чтобы совершить подгонку фаз. Можно сказать даже, что это генератор из
асинхронного двигателя, своими руками сделанный. Только его основная

функция

это преобразование,
сдвиг фаз. Одна обмотка соединяется с фазой, между двумя остальными включен конденсатор. Вторая
обмотка соединяется с нулем, третья подключается туда же, только через автотрансформатор. Средний его
вывод

это одна фаза, две
остальных

это выводы розетки.

Что учесть для переделки в генератор

Чтобы сделать ветро генератор из (асинхронный!) двигателя, вам потребуется учесть одну главную
особенность. А именно

создать магнитное поле, которое будет совершать движение. Добиться э
того можно
двумя путями. Первый

это установка постоянных магнитов на роторе. Второй

сделать обмотку
возбуждения на якоре. У обоих способов есть как преимущества, так и недостатки.

Решить нужно перед началом проведения работ, генератор тока какого вида
вам необходим. Если нужен
постоянный, то потребуется применять диоды для выпрямления. Это позволит обеспечить светом небольшой
дом, а также запитать практически любую бытовую аппаратуру. Самодельные генераторы тока могут
приводиться в движение даже силой в
етра. Нужно только провести расчет обмоток, чтобы на выходе не было
превышения напряжения. Хотя стабилизацию можно сделать и при помощи использования регуляторов,
используемых в автомобильной технике.

Постоянные магниты или обмотка возбуждения?

Как говорил
ось ранее, можно сделать обмотку возбуждения или провести монтаж постоянных магнитов.
Недостаток последнего способа

большая стоимость магнитов. А минус первого

это необходимость
применять щеточный узел для обеспечения питанием. Он нуждается в уходе и с
воевременной замене.
Причина

трение, которое постепенно съедает поверхность графитовой щетки. Любой автомобильный
генератор, инструкция к которому обязательно прилагается, обладает именно таким недостатком.

Чтобы сделать обмотку возбуждения, достаточно и
зменить конструкцию якоря. Он должен быть
металлическим, на нем обязательно наматывается провод в лаковой изоляции. Также потребуется на одном
краю ротора установить контакты, которые служат для питания. Но плюс в том, что имеется возможность
стабилизации
напряжения на выходе генератора. Проще окажется в якоре сделать пазы для монтажа
ниодимовых магнитов. Они создают очень сильное поле, которого достаточно для генерации больших
значений напряжения и тока.

Сколько фаз нужно на выходе?

Проще всего оказывается
, конечно, сделать генератор, фото которого приведено, если на выходе должна
быть всего одна фаза. Но тут есть загвоздка

не каждая конструкция позволяет осуществить это.
Самодельный генератор из асинхронного двигателя такого типа можно сделать, если все
обмотки выведены и
не соединены между собой. Многие модели моторов имеют лишь три вывода, остальные уже внутри
соединены, поэтому для реализации задумки нужно полностью его разобрать и вывести необходимые
провода наружу.

Затем они соединяются последователь
но и на выходе можно получить однофазное напряжение. Но если вам
нужно трехфазное, не стоит делать ничего, модернизация обмоток не потребуется. Но учитывать особенности
все равно нужно. Необходимо, чтобы генератор из асинхронного двигателя, своими руками с
деланный, имел
соединение обмоток по схеме звезда. Вот небольшое отличие от варианта, когда машина работает в качестве
источника движения. Эффективная генерация электроэнергии возможна только при включении по схеме
звезда.

Как провести выпрямление тока?

Но

если возникает необходимость в получении постоянного тока, вам потребуется знание схемотехники.
Нужно 12 или 24 Вольт напряжение? Нет ничего проще, автомобильная электроника придет на помощь. Но
только в том случае, если используется обмотка возбуждения в

качестве генератора магнитного поля. При
использовании постоянных магнитов процедура стабилизации усложняется.

Вариант выпрямителя выбирается, исходя из того, какое количество фаз на выходе генератора. Если одна, то
вполне достаточно мостовой схемы, либо
вообще на одном диоде (однополупериодный выпрямитель). Если
же три фазы на выходе, то возникнет необходимость в использовании шести полупроводников для
выпрямления. Также три штуки (по одному на каждую фазу)

для защиты от обратного напряжения.

Как сделат
ь из трех одну фазу

Это действие проводить не нужно, так как оно попросту бессмысленно. Генератор если выдает трехфазное
переменное напряжение, то для запитывания потребителей (телевизора, лампы накаливания, холодильника,
и пр.), необходимо использовать вс
его один вывод. Второй

это общий, точка соединения обмоток. Как было
сказано ранее, требуется соединять их по схеме звезда.

Поэтому у вас имеется возможность подключения потребителей к одной из фаз. Вопрос в том, есть ли смысл,
рационально ли так поступа
ть? Если необходимо обеспечить дом исключительно светом, никаких
потребителей не планируете подключать, то вполне разумнее использовать маломощные светодиодные
светильники. Они потребляют малое количество электроэнергии, поэтому генератор тока, который выд
ает
стабильно 12 Вольт, способен обеспечить дом не только светом. Можно без труда включать и бытовую
технику, которой требуется для работы именно такое напряжение.

Правила намотки провода

Не всегда нужна такая информация, так как, в целях упрощения констру
кции, используется та статорная
обмотка, которая уже имеется. Но она не всегда удовлетворяет тем условиям, которые стоят перед вами.
Например, если вы конструируете ветро генератор из (асинхронный) двигателя, невозможно получить
минимальное число оборотов
ротора. Следовательно, на выходе напряжение окажется малым и
недостаточным для работы бытовой техники. Поэтому возникает необходимость в небольших переделках.

Обмотку проводить нужно более толстым проводом, чтобы получить более высокое значение силы тока н
а
выходе. Для этого избавляетесь от старого провода. Намотка ведется вплотную, на картонный каркас. Когда
она проведена, требуется нанести слой лака, обильно ним пропитать провод. Только не забудьте перед
началом эксплуатации устройства хорошенько просушит
ь. Для этого лампу накаливания 25 или 40 Вт
установите в середине статора и оставьте на 1
-
2 дня. Не оставляйте только без присмотра.

Экспериментальное определение необходимого количества витков

Чтобы определить, какое число витков вам необходимо для нормал
ьной работы генератора, потребуется
воспользоваться множеством формул. Но нужно знать сечение сердечника, материал, из которого он
изготовлен. Но это зачастую просто невозможно определить. Поэтому приходится делать эксперименты. В
зависимости от того, одна

или три фазы вам нужно, изменяется алгоритм проведения эксперимента.
Самодельный генератор из асинхронного двигателя может быть изготовлен различными методами.

Если планируется сделать одну фазу на выходе, то намотайте равномерно по всему сердечнику 10
-
20

витков
провода. Соберите всю конструкцию и соедините с приводом, который будете использовать в дальнейшем.
Проведите замер напряжения на выходе, разделите на то число витков, которое намотали. И вы получите
напряжение, снимаемое с одного витка. Для вычисл
ения длины обмотки, вам нужно применить простое
вычисление

напряжение (необходимое) разделить на полученное значение. Аналогично проводится расчет
и трехфазного генератора.

Выводы

Сделать генератор из асинхронного двигателя своими руками несложно. Самое
главное

это решить, какой
привод планируете использовать. Если это обычный бензиновый двигатель, то проблем никаких не
возникнет. Большие трудности возникнут в случае, если в качестве привода вы будете использовать ветряную
мельницу. Причина

обороты дв
игателя, равно как и выходное напряжение, напрямую зависят от силы
ветра, его скорости. Поэтому такие генераторы необходимо рассчитывать таким образом, чтобы даже при
минимальных оборотах вырабатывалось номинальное напряжение. Но на выходе желательно иметь

не более
12 Вольт. Это окажется более простым решением.

Для самодельного ветряка удобно использовать асинхронный генератор. Он сразу вырабатывает переменный ток, и нет необходимости подключать инвертор, что упрощает схему сборки. Это означает, что всеми бытовыми приборами можно пользоваться прямо от ветряка. Сделать асинхронный генератор своими руками несложно. Достаточно найти старый асинхронный двигатель (АД) от какого-либо бытового прибора и использовать его в качестве основы для ветряка. Понадобится, правда, несложная переделка.

Принцип работы асинхронного двигателя и генератора

Асинхронный двигатель — это электродвигатель переменного тока. Его особенность состоит в том, что магнитное поле, которое производится током обмотки статора, и ротор вращаются с разной частотой. В синхронных двигателях их частота совпадает. Наиболее распространенная конструкция АД включает в себя фазный ротор и статор, между которыми находится воздушный зазор. Но встречаются и двигатели с короткозамкнутым ротором. Активная часть АД — это магнитопровод и обмотки. Остальные элементы обеспечивают жесткость конструкции, возможность вращения и охлаждение. Ток в таком двигателе появляется благодаря электромагнитной индукции, которая возникает при вращении магнитного поля с определенной скоростью.

В свою очередь, асинхронный ветрогенератор — это двигатель, который работает в генераторном режиме. Приводной ветродвигатель вращает ротор и магнитное поле в одном направлении. При этом возникает отрицательное скольжение ротора, на валу появляется тормозящий момент, после чего энергия передается на аккумулятор. Для возбуждения ЭДС в дело идет остаточная намагниченность ротора, а усиление ЭДС происходит за счет конденсаторов.

Изготовление ветрогенератора своими руками из асинхронного двигателя

Чтобы приспособить АД под ветряк, вам нужно создать в нем движущееся магнитное поле. Для этого проведите ряд преобразований:

  • Подберите неодимовые магниты для ротора. От их силы и количества зависит сила магнитного поля.
  • Проточите ротор под магниты. Это можно сделать при помощи токарного станка. Снимите пару миллиметров со всей поверхности сердечника и дополнительно сделайте углубления под магниты. Толщина проточки зависит от выбранных магнитов.
  • Сделайте разметку ротора на четыре полюса. На каждом разместите магниты (от восьми штук на полюс, но лучше больше).
  • Теперь нужно зафиксировать магниты. Сделать это можно при помощи суперклея, но тогда удерживайте элементы пальцами до тех пор, пока клей не схватится (при контакте с ротором магниты будут менять свое положение). Или закрепите все элементы скотчем.
  • Следующий шаг — заполнение свободного пространства между магнитами эпоксидной смолой. Для этого обмотайте ротор с магнитами бумагой, поверх нее намотайте скотч, а концы бумажного кокона загерметизируйте пластилином. После изготовления такой защиты внутрь можно заливать смолу. Когда эпоксидка окончательно высохнет, удалите бумагу.
  • Зачистите поверхность ротора наждачкой. Для этого используйте бумагу средней зернистости.
  • Определите два роторных провода, которые ведут к рабочей обмотке. Остальные провода обрежьте, чтобы не путаться.

На этом основные преобразования завершены. Дополнительно вы можете приобрести контроллер, а из кремниевых диодов сделать выпрямитель для вашего ветрогенератора. Кроме того, проверьте вращение двигателя. Если ход тугой, замените подшипники. Быстрый совет: если хотите увеличить силу тока, а также снизить напряжение в вашем агрегате, то не поленитесь и перемотайте статор толстой проволокой.

Тестирование генератора

Перед установкой готового генератора на осевую конструкцию или мачту нужно его протестировать. Для тестирования понадобится дрель или шуруповерт, а также какая-нибудь нагрузка, например, обычная лампочка, которую вы используете в быту. Подсоедините их к вашему агрегату и посмотрите, на каких оборотах лампочка горит ярко и ровно.

Если тестирование показывает хорошие результаты, то можно приступать к монтажу ветряка. Для этого необходимо изготовить лопастные элементы, осевую конструкцию, подобрать аккумулятор. Лопасти можно изготовить самостоятельно или купить на Алиэкспресс

Правила эксплуатации асинхронного ветрогенератора

Такой ветряк обладает рядом особенностей, которые нужно учитывать при эксплуатации:

  • Будьте готовы, что КПД готового устройства будет постоянно колебаться (в пределах 50%). Устранить этот недостаток невозможно, это издержки процесса преобразования энергии.
  • Позаботьтесь о качественной изоляции, а также заземлении ветрогенератора. Это обязательное требование безопасности.
  • Сделайте кнопки для управления устройством. Это значительно упростит его использование в дальнейшем.
  • Кроме того, предусмотрите места для подключения измерительных приборов. Это обеспечит вас данными о работе вашего агрегата, позволит проводить диагностику.

Преимущества и недостатки ветрогенератора из асинхронного двигателя

Если сравнивать асинхронный и синхронный ветрогенераторы, то у асинхронных есть как преимущества, так и недостатки.

Преимущества заключаются в следующем:

  • Мощные устройства с простой конструкцией, небольшими размерами и весом.
  • Высокий уровень эффективности при выработке энергии.
  • Нет необходимости в инверторе, потому что такой ветрогенератор производит переменный ток (220/380В). Он может непосредственно питать бытовые устройства или работать параллельно с сетью централизованного энергоснабжения.
  • Выходное напряжение очень стабильно.
  • Частота на выходе не зависит от скоростей ротора.
  • Обладает высокой устойчивостью к коротким замыканиям, защищен от влаги и грязи.
  • Может служить многие годы, так как содержит мало изнашивающихся элементов.
  • Работает на конденсаторном возбуждении.

Недостатки такие:

  • При отсутствии аккумулятора асинхронный генератор может затухать в моменты перегрузки. Это является ограничителем для использования такого агрегата. Но для ветряка такой недостаток неактуален, потому что его конструкция предполагает накопитель энергии.
  • Конденсаторные батареи имеют высокую стоимость, поэтому переделка старого АД — это оптимальное решение вопроса.
  • Оборотность генератора находится в обратной зависимости от его массы.

Таким образом, ветрогенератор своими руками из асинхронного трехфазного двигателя — это недорогое и удобное решение для дома.

Генератор из асинхронного двигателя, перемотка статора и переделка ротора под магниты

Долго я думал на каком-же асинхронике его сделать, так как изначально имелось в наличие 2 мотора. Тот который D-106mm, L-100mm. 24 необходимых магнита 10х13, ложатся по кругу впритык почти без зазора, побоялся так делать. 18 магнитов не захотел, уж больно мало мне это показалось. Решение было принято в пользу АИР90L4 D-96mm, L-100mm. Тот на четырёх полюсах 3Кватт, а этот 2,2Кватт. Тот весит 25 кг, этот 18. Вот такой с меня обмотчик. Далее занялся статором, для этого мотал отдельно каждую обмотку на импровизированом станочке из жестяных банок, мотал на 6 полюсов проводом 1,12мм , вместилось в паз 24 проводника. И то с таким скрипом, что клинья некуда было вбивать. Так что ограничился тем-же электрокартоном в качестве изоляции.Пропитывать ещё не пропитывал т.к. понятия не имею что такое электролак. Купил Цапон лака и всё равно побоялся. Думаю народ подскажет как лучше тем более не к спеху.

   

Дело дошло и до ротора, на ротор из отлитой балванки выточил полую насадку. В ней просверлил отверстия под магниты, но когда насаживал на ротор насадка раскололась. Пришлось вытачивать новую, после этого вышло всё нормально, наклеел магниты и собрал генератор.

          Сразу после сборки последовали испытания, генератор крутил дрелью, обороты мерял тахометром с датчиком холла от комповского кулера. Как меряет мне нравится, стрелка движется плавно, тарировал стрелочным механическим тахометром. Вся проблема в том, что дрелью меньше 300 об. неудержишь, а больше 700 не крутит. Генаратор тестировался нагрузкой 5 Ом, сопротивление одной фазы 1 Ом.Мерялось на одной фазе. (Не между фаз).В таблице результат испытаний.

Обороты: 300,400,500,600,700

Вольты-амперы:16-3,5/ 21-5/ 27-6/ 32-7/ 38-8,1

Далее занялся изготовлением диодного моста, так-же привёл в порядок свой тахометр, собрав его в картонную коробку и ещё раз сверив его показания с механическим тахометром.Три диодных моста поставил только для того, чтобы можно было поэкспериментировать с тремя полными мостами параллельно и последовательно. Сварил переходник на перфоратор и подключил его через диммер на 1000W.

После подготовки всех этих составляющих, появилась возможность снять реальные характеристики генератора. Сопротивление фазы 0,9-1,0 Ом. В качестве нагрузки использовалася аккумулятор. Ниже снятые данные генератора. Из нашей таблички видно, что винт 2,3м ранее рассчитанный по моей просьбе, вполне подойдёт для этого генератора. Начало заряда с 3м/с, момент страгивания этого винта на этом ветре 0,5Нм, а у генератора 0,4Нм.

Генераторный режим асинхронного двигателя: особенности создания своими руками

Устройство представляет собой модель, которая с помощью переменного напряжения может воспроизводить электроэнергию. Генераторный режим асинхронного двигателя включает в себя две активные обмотки, благодаря которым запускается функционал устройства. Это обмотка возбуждения и статорный вариант.

Схема работы

Асинхронный генератор считается одним из наиболее простых и надёжных в плане эксплуатации. Процесс работы выглядит следующим образом:

  • В якорной обмотке с помощью напряжения, что идёт от аккумулятора, создаётся магнитное поле.
  • Вращение элементов поля можно организовать своими руками или же автоматизировать процесс с помощью использования реле.
  • Скорость магнитного поля позволяет вырабатывать электромагнитную индукцию, что провоцирует возникновение электричества.

Из-за наличия внутри оборудования короткозамкнутого ротора не все схемы имеют возможность обеспечивать обмотку напряжением. Поэтому даже в случае активного вращения вала клемы будут обесточены.

Составляющие элементы

Генератор из асинхронного двигателя своими руками 220 В создать несложно, но предварительно нужно понять, какие детали входят в механизм. Даже простые модели требуют нужных элементов для воссоздания электричества. Стандартный асинхронный двигатель включает в себя:

  • Статор из сетевой обмотки на три фазы. Они размещаются по его рабочей поверхности в виде намотки.
  • Обмотку, напоминающую звезду и состоящую из контактных колец, что имеют выход к ротору.
  • Щётки, которые не совершают по факту никакой работы, но способствуют включению реостата. Такое приспособление влияет на функциональность обмотки и изменяет параметры её сопротивления.
  • Иногда в механизме может быть встроен специальный автоматический короткозамыкатель, который может закоротить обмотку и остановить элемент реостата, даже если деталь пребывает в работе.

В стадии замыкания щёток и контактных колец могут включаться дополнительно элементы для их разводки. Не все генераторы оснащены такими деталями, приспособление можно увидеть у новых моделей.

Секреты и тонкости

Чтобы сделать асинхронный двигатель в режиме генератора нужно не только изучить модель устройства, но и подобрать нужные элементы. Специалисты советуют использовать неполярные батареи конденсаторного типа, поскольку электролитические элементы в данную схему не вписываются.

Трёхфазный тип запускает детали конденсаторов с помощью звезды. Это даёт возможность запустить генеративный процесс с небольшими оборотами ротора, но такой способ негативно сказывается на выходе напряжения.

Можно создать генератор, используя и однофазный механизм, но это только в случае, если имеются короткозамкнутые роторы. Нельзя использовать для переделки под генератор коллекторный тип двигателей, поскольку их мощность слишком высока для такого механизма. В домашних условиях узнать о ёмкости батареи конденсаторного типа нельзя. Это стоит учитывать в процессе переделки.

Узнать, подходит ли батарея для генератора можно исходя из её веса. Тяжесть детали должна быть равной электродвигателю.

Процесс изготовления

Для этой цели может использоваться механизм из бытовой техники, например, со стиральной машинки. Сначала снимается верхний слой из сердечника двигателя, чтобы открылся доступ ко всем составляющим элементам. После этого по всему сердечнику нужно проделать дополнительные отверстия и сделать небольшое углубление.

Из ротора снимаются размеры и создаётся шаблон в виде полосы, соответствующий реальным параметрам механизма. На каждый полюс образовавшегося пространства нужно прикрепить неодимовой магнит. Для процесса может потребоваться от 8 до 10 магнитов.

Зафиксировать магниты лучше суперклеем, но можно применять и другие варианты из доступных подручных средств. Для герметизации устройства ротор можно обернуть бумагой и залепить торцовую часть пластилином.

Свободные места между магнитами нужно обработать используя эпоксидную смолу. Поле того, как заливка высохнет, можно снять бумажную оболочку, в которую и заливалась смесь. После этого начинается этап шлифовки поверхности ротора. Деталь нужно зафиксировать в тиски. Далее, определяется состояние проводов и происходит тестирование созданного генератора.

Процесс преобразования асинхронного двигателя в генератор такого же типа завершён. Применять устройство можно в разных вариантах работ.

Что касается оценки уровня эффективности, то генератор из трёхфазного двигателя в этом плане ничем не отличается от асинхронного типа. Одним из плюсов первого варианта является наличие конденсаторной батареи, улучшающей процесс работы генератора и по своей структуре считающейся одним из наиболее сложных технических элементов устройства.

зарядка аккумулятора - бесщеточный двигатель переменного тока в качестве генератора

Вы не можете использовать ESC. Лучше всего использовать контроллер заряда, который выпрямляет выходной сигнал генератора и увеличивает или уменьшает выходное напряжение постоянного тока до уровня, который лучше всего подходит для батареи. Можно было бы просто подключить выпрямитель между генератором и аккумулятором, но напряжение генератора должно быть достаточно близким к напряжению, необходимому для зарядки аккумулятора. Трансформатор может быть использован для преобразования его в нужный диапазон.В таком случае скорость генератора необходимо будет до некоторой степени контролировать, чтобы избежать зарядки аккумулятора чрезмерным током. Если в качестве генератора используется трехфазный двигатель, требуется трехфазный выпрямитель. Если это не трехфазный двигатель, требуются дополнительные исследования.

Обратите внимание, что я предположил, что под «бесщеточным электродвигателем переменного тока» вы подразумеваете электродвигатель с постоянными магнитами, который можно назвать бесщеточным электродвигателем постоянного тока или синхронным электродвигателем с постоянными магнитами. Асинхронные двигатели также бесщеточные, за исключением редко встречающегося электродвигателя с фазным ротором.Лучше всего указать, какой именно двигатель вы собираетесь использовать.

При использовании синхронного двигателя с постоянными магнитами, подключенного к неуправляемому выпрямителю, мощность постоянного тока легко генерируется простым вращением вала двигателя. Генерируемое напряжение не регулируется и определяется скоростью, с которой работает генератор. Однако должно быть относительно легко получить от него достаточно регулируемой мощности для управления зарядным устройством, повышающим напряжение.

Для любого регулятора скорости потребуются значительные изменения в конструкции, чтобы преобразовать его в преобразователь заряда аккумулятора.

Единственный ответ на вопрос такого типа, который разумно дать здесь, - это обрисовать общую концепцию, которая является разумным подходом к проблеме. Чтобы продолжить, вы должны сначала полностью определить характеристики генератора и первичного двигателя, включая ожидаемый диапазон рабочих скоростей и управляемость первичного двигателя. Это диктует требования к системе обработки мощности генератора.

Второй шаг - определение подхода к обработке мощности и определение параметров его основных элементов.

Электродвигатель - Технический центр Эдисона

В электродвигатель был впервые разработан в 1830-х годах, через 30 лет после первая батарея. Интересно, что мотор был разработан до появления первых динамо-машина или генератор.

Вверху: Первый мотор Davenport

1.) История и изобретатели:

1834 - Томас Дэвенпорт из Вермонта разработал первый настоящий электродвигатель («настоящее» значение достаточно мощный, чтобы выполнить задачу) хотя Джозеф Генри и Майкл Фарадей создал ранние устройства движения с использованием электромагнитных полей. Ранние «моторы» создавали вращающиеся диски или рычаги, которые качался взад и вперед. Эти устройства не могли сделать никакой работы для человечества. но были важны для того, чтобы проложить путь к лучшим двигателям в будущем.Различные двигатели Давенпорта были возможность запускать модельную тележку по круговой колее и другие задачи. Позже тележка оказалась первым важным приложением. электроэнергии (это была не лампочка). Рудиментарный полноразмерные электрические тележки были окончательно построены через 30 лет после смерти Давенпорта в 1850-х годах.

Мировой удар электродвигателя перед лампочками:
Тележки и подключенные энергосистемы стоили очень дорого. строили, но перевозили миллионы людей на работу в 1880-е годы.До того как рост электросети в 1890-х гг. большинство людей (средний и низкие классы) даже в городах не было электрического света в дома.

Только в 1873 году электродвигатель наконец добился коммерческого успеха. С 1830-х годов тысячи инженеров-первопроходцев улучшили двигатели и создали много вариаций. См. Другие страницы для получения более подробной информации об огромной истории электродвигателя.

Выводы двигателя к генератору:
После слабые электродвигатели были разработаны Фарадеем и Генри, другой пионер по имени Hippolyte Pixii выяснил это, запустив двигатель в обратном направлении он мог создавать импульсы электричества. К 1860-м годам разрабатывались мощные генераторы. Электротехническая промышленность не могла начаться, пока генераторы были разработаны, потому что батареи не были экономичным способом получения энергии потребности общества.Подробнее о генераторах и динамо здесь>

2.) Как работают моторы

Электродвигатели могут работать от переменного (AC) или постоянного (DC) тока. Двигатели постоянного тока были разработаны первыми и имеют определенные преимущества и недостатки. Каждый тип мотора работает по-разному, но все они используют силу электромагнитного поля. Мы поговорим об основных принципах электромагнитных полей. в двигателях, прежде чем вы сможете перейти к различным типам двигателей.

переменного тока электродвигатели используют вторичную и первичную обмотку (магнит), первичную подключен к сети переменного тока (или непосредственно к генератору) и находится под напряжением. Вторичный получает энергию от первичной обмотки, не касаясь ее напрямую. Это делается с помощью сложные явления, известные как индукция.

Справа: инженер работает над кастомными модификациями дрона-октокоптера.Восемь крошечных DC двигатели создают достаточно мощности, чтобы поднимать фунты полезной нагрузки. Более новые конструкции двигателей, подобные этому, используют редкоземельные металлы в статоре для создания более сильных магнитных полей в небольших и легких пакеты.

Вверху: универсальный двигатель, обычно используемый в большинстве электроинструментов.Имеет тяжелый плотный ротор. Вверху: асинхронный двигатель может иметь «беличью клетку» или полый вращающийся катушка или тяжелый якорь.

2.a) Детали электродвигателя:

Есть много видов электродвигателей, но в целом они имеют похожие детали. Каждый мотор имеет статор , который может быть постоянным магнитом (как показано в «универсальном двигателе» выше) или намотанными изолированными проводами (электромагнит, как на фото вверху справа).Ротор находится посередине (большую часть времени) и подлежит к магнитному полю создается статором. Ротор вращается, поскольку его полюса притягиваются и отталкиваются полюсами статора. Смотрите наши видео ниже, показывающее, как это работает. В этом видео рассматривается бесщеточный двигатель постоянного тока, у которого ротор находится снаружи, в других двигателях. тот же принцип обратный, с электромагнитами снаружи. Видео (1 минута):

Мощность мотора:
Сила двигателя (крутящий момент) определяется напряжением и длина провода электромагнита в статоре, чем длиннее провод (что означает больше катушек в статоре), тем сильнее магнитное поле.Это означает больше мощности для повернуть ротор. Смотрите наше видео, которое относится как к генераторам, так и к двигателям. Узнать больше.

Арматура - вращающаяся часть двигателя - это раньше называлось ротором, это поддерживает вращающиеся медные катушки. На фото ниже вы не видите катушки, потому что они плотно заправлены в якорь. Гладкий корпус защищает катушки от повреждений.

Статор - Корпус и катушки, составляющие внешнюю часть двигателя. В статор создает стационарное магнитное поле.

Вверху: В этом статоре отчетливо видны четыре отдельные катушки (якорь был удалено)

Обмотка или «Катушка» - медные провода, намотанные на сердечник для создания или получить электромагнитную энергию.

Провода, используемые в обмотки ДОЛЖНЫ быть изолированы. На некоторых фото вы увидите, что выглядит как обмотки из голого медного провода, это не так, это просто эмалированная с прозрачным покрытием.

Медь это самый распространенный материал для обмоток. Алюминий также используется но должен быть толще, чтобы нести такую ​​же электрическую безопасно загружать.Медные обмотки позволяют использовать двигатель меньшего размера. Подробнее о меди>

Перегорание мотора, устранение неисправностей:
Если двигатель работает слишком долго или с чрезмерной нагрузки, он может «сгореть». Это означает, что высокая температура вызвала изоляция обмотки может сломаться или оплавиться, а затем обмотки закорочены когда они касаются друг друга, и двигатель выходит из строя. Вы также можете сжечь двигатель, подав на него большее напряжение, чем обмоточные провода рассчитаны на.В этом случае проволока расплавится в самом слабом месте, разорвав соединение. Вы можете проверьте двигатель, чтобы увидеть, не перегорел ли он таким образом, проверив сопротивление (сопротивление) с помощью мультиметра. Как правило, при проверке двигателя вы должны искать черные метки на обмотках.


Squirrel Cage - вторая катушка в асинхронном двигателе, см. Ниже посмотреть, как это работает
Induction - генерация электродвижущей силы в замкнутом цепь изменяющимся магнитным потоком через цепь.В сети переменного тока уровень мощности повышается и понижается, это заряжает обмотку на момент создания магнитного поля. Когда мощность падает в цикле магнитное поле не может поддерживаться, и оно схлопывается. Это действие передает мощность через магнетизм на другую обмотку или катушку. УЧИТЬСЯ БОЛЬШЕ об индукции здесь.

3.) Типы электродвигателей переменного тока

Двигатели переменного тока:

3. а) Индукция Двигатель
3.b) Универсальный двигатель (можно использовать постоянный или переменный ток)
3.c) Синхронные двигатели
3.d) Двигатели с экранированными полюсами


См. Нашу страницу, посвященную асинхронным двигателям, здесь>

Это мощный двигатель, который можно использовать с мощность переменного и постоянного тока.

Преимущества :
-Высокий пусковой крутящий момент и небольшой размер (хорошо для обычного использования в бытовые электроинструменты)
-Может работать на высоких скоростях (отлично подходит для стиральных машин и электродрелей)

Недостатки:
- Щетки со временем изнашиваются

Использует: приборы, ручной электроинструмент

Посмотреть видео ниже:


3.в) синхронный Моторы (Selsyn Motor)

Этот мотор аналогичен асинхронному двигателю, за исключением того, что он движется с частотой сети.

Мотор Селсин был разработан в 1925 году и сейчас известен как Synchro. Узнать больше о их здесь .


Преимущества: Обеспечивает постоянную скорость, которая определяется количество полюсов и частота подаваемого переменного тока.
Недостатки: Не может работать с переменным крутящим моментом, этот двигатель будет остановиться или «вытащить» с заданным крутящим моментом.
Использует: a часы использует синхронные двигатели для обеспечения точной скорости вращения Руки. Это аналог двигателя , и хотя скорость точная, шаговый двигатель лучше подходит для работы с компьютерами, так как он функционирует на жестких «ступенях» разворота.

Этот мотор одинарный фазный двигатель переменного тока.Имеет только одну катушку с поворотным валом. в центре, отставание потока, проходящего вокруг катушки, вызывает сила магнита, чтобы двигаться по катушке. Это получает центральный вал с вращением вторичной обмотки.

Цилиндр изготовлен из стали и имеет медные стержни, встроенные по длине в цилиндр поверхность.


Преимущества: достигает высокого уровня крутящего момента, когда ротор начал быстро вращаться.
Используется в вентиляторах, приборах

Недостатки: медленный запуск, низкий крутящий момент для запуска. Используется в вентиляторах, обратите внимание на медленный старт фанатов.
Этот двигатель также используется в стоках стиральных машин, открывателях консервных банок и прочая бытовая техника.
Другие виды двигателей лучше подходят для более мощных нужд выше 125 Вт.

Посмотреть видео ниже:


4.) Двигатели постоянного тока (DC):

Двигатели постоянного тока были первым видом электродвигателей. Обычно они составляют 75-80% эффективный. Они хорошо работают на регулируемых скоростях и обладают большим крутящим моментом.

4.a) Общая информация
4.b) Щеточные двигатели постоянного тока
4.b.1) Двигатель постоянного тока с параллельной обмоткой
4.b.2) Двигатель постоянного тока с последовательной обмоткой
4.b.3) Двигатели для блинов
4.b.4) Двигатель постоянного тока с постоянным магнитом
4.b.5) С раздельным возбуждением (Sepex)
4.c) Бесщеточные двигатели постоянного тока
4.c.1) Шаговый двигатель
4.c.2) Двигатели постоянного тока без сердечника / без сердечника


Матовый Двигатели постоянного тока:

Первый DC двигатели использовали щетки для передачи тока на другую сторону двигателя. Кисть названа так потому, что сначала имела форму метлы. Маленькие металлические волокна терлись о вращающуюся часть двигателя. поддерживать постоянный контакт. Проблема с кистями в том, что они изнашиваются со временем из-за механики. Кисти будут создавать искры из-за трения. Парки часто плавили изоляцию и становились причиной коротких замыканий. в арматуре и даже переплавил коммутатор.

Первые моторы использовались на уличных железных дорогах.

Использует сплит кольцевой коммутатор со щетками.
Преимущества:
-Используется во множестве приложений, имеет простой контроль скорости с помощью уровня напряжения для управления.
-Имеет высокий пусковой момент (мощный пуск)
Ограничения: щетки создают трение и искры, это может привести к перегреву устройство и плавить / сжигать щетки, поэтому максимальная скорость вращения ограничено. Искры также вызывают радиочастоты. вмешательство. (RFI)

Есть пять типов двигателей постоянного тока с щетками:
Двигатель постоянного тока с параллельной обмоткой
Двигатель с обмоткой серии постоянного тока
Составной двигатель постоянного тока - совокупный и дифференциально смешанный двигатель
Двигатель постоянного тока с постоянным магнитом
Двигатель с раздельным возбуждением
Блинный двигатель

Бесщеточный Двигатели постоянного тока:

Щетка заменен внешним электрическим выключателем, который синхронизируется с положение двигателя (он изменит полярность по мере необходимости, чтобы сохранить вал двигателя вращается в одном направлении)
- Более эффективен, чем щеточные двигатели
- Используется, когда необходимо точное регулирование скорости (например, в дисководах, ленте машины, электромобили и т. д.)
-Долгий срок службы, так как работает при более низкой температуре и нет щеток изнашиваться.

Типы бесщеточные двигатели постоянного тока:
Шаговый двигатель
Двигатели постоянного тока без сердечника / без сердечника

4.b) ЩЕТОЧНЫЙ ДВИГАТЕЛИ ПОСТОЯННОГО ТОКА:

4.b.1) DC Шунтирующий двигатель

Шунт постоянного тока Электродвигатель подключен так, что катушка возбуждения подключена параллельно с арматура.Обе обмотки получают одинаковое напряжение. Катушка шунтирующего поля намотан множеством витков тонкой проволоки для создания высокого сопротивления. Этот гарантирует, что катушка возбуждения будет потреблять меньше тока, чем якорь (ротор).

Арматура (как видно выше, это длинная толстая цилиндрическая вращающаяся часть) имеет толстую медные провода, чтобы через них проходил большой ток, чтобы завести мотор.

В качестве арматуры витков (см. фото ниже) ток ограничен противоэлектродвижущим сила.

Сила катушки шунтирующего поля определяет скорость и крутящий момент двигателя.

Преимущества: Шунтирующий двигатель постоянного тока регулирует свою скорость. Это означает, что если загрузка При добавлении якоря замедляется, КЭДС уменьшается, что приводит к тому, что якорь ток увеличивается. Это приводит к увеличению крутящего момента, что помогает переместить тяжелый груз. При снятии нагрузки якорь ускоряется, CEMF увеличивается, что ограничивает ток, а крутящий момент уменьшается.

Конвейер Пример ленты : Представьте, что конвейерная лента движется с заданной скоростью, затем в пояс входит тяжелая коробка. Этот тип двигателя будет поддерживать движение ремня. с постоянной скоростью независимо от того, сколько коробок движется по ленте.

Посмотреть видео ниже, демонстрирующее действие параллельного двигателя постоянного тока !:

4.б.2) DC двигатель с последовательным заводом

Двигатель с серийной обмоткой - это двигатель постоянного тока с самовозбуждением. Обмотка возбуждения подключена внутри последовательно с обмоткой ротора. Таким образом обнажается обмотка возбуждения в статоре. до полного тока, создаваемого обмоткой ротора.

Этот тип двигателя похож на двигатель постоянного тока с параллельной обмоткой, за исключением того, что обмотки возбуждения сделаны из более тяжелого провода, поэтому он может выдерживать более высокие токи.

Применение: Этот тип двигателя используется в промышленности в качестве пускового двигателя из-за большого крутящего момента.

Подробнее о двигателе с последовательным заводом:
Артикул 1
Артикул 2

4.b.3) Блин Двигатель постоянного тока (также известный как двигатель с печатным якорем)

Блин мотор - мотор без железа.Большинство двигателей имеют медную обмотку. железный сердечник.

Видео с демонстрацией примеры мотора-блинчика:

Преимущества:
Точная регулировка скорости, плоский профиль, не имеет зубцов, которые возникают утюгом в электромагните

Недостатки:
плоская форма не подходит для всех приложений

Имеет обмотку в форме плоского эпоксидного диска между двумя магнитами с сильным магнитным потоком.Это полностью без железа, что делает большую эффективность. Используется в сервоприводах, был первым спроектирован как моторы стеклоочистителя и видеоиндустрии, так как был очень плоским в профиль и имел хороший контроль скорости. Компьютеры и видео / аудио запись всей использованной магнитной ленты, точный и быстрый контроль скорости был нужен, поэтому для этого был разработан мотор-блин. Сегодня это используется во множестве других приложений, включая робототехнику и сервосистемы.

4.b.4) Составной двигатель постоянного тока (накопительный и дифференциально-составной)

Это еще один самовозбуждающийся двигатель с последовательными и шунтирующими катушками возбуждения. Он имеет эффективное регулирование скорости и приличный пусковой крутящий момент.

Узнайте больше об этом типе двигателя здесь.

4.b.5) Двигатель постоянного тока с постоянным магнитом

Этот тип двигателя хорошо работает на высоких оборотах и ​​может быть очень компактным.
Область применения: компрессоры, другое промышленное применение.

Узнайте больше об этом типе двигателя здесь.

4.б.6) Отдельно возбужденный (сепекс)

SepEx имеет обмотку возбуждения, которая питается отдельно от якоря с прямым текущий сигнал. Полевой магнит также имеет собственный источник постоянного тока. В результате вы увидите это Тип двигателя имеет четыре провода - 2 для возбуждения и 2 для якоря.

Этот электродвигатель представляет собой щеточный электродвигатель постоянного тока. который имеет более широкие кривые крутящего момента, чем двигатель постоянного тока с последовательным возбуждением.

Узнайте больше об этом типе двигателя здесь.

4.c) Бесщеточные двигатели постоянного тока:

4.

c.1) Шаговый Мотор

Степпер мотор - это тип бесщеточного мотора, который перемещает центральный вал один часть хода за раз.Это делается с помощью зубчатых электромагнитов. вокруг куска железа в форме централизованной шестерни. Есть много видов шаговых двигателей. Они используются в системах, которые перемещают объекты с высокой точностью. положение, как сканер , дисковод и промышленная лазерная резьба устройства .

Посмотреть видео шагового двигателя в действии ниже:

4.

в.2) Без сердечника / Двигатели постоянного тока без железа

Медь намотанная или алюминиевый сердечник вращается вокруг магнита без использования железа. Этот делается путем придания цилиндрической формы.
Преимущество: легкий и быстрый запуск отжима (используется в компьютере жестких дисков)
Недостаток: легко перегревается, так как железо обычно действует как радиатор, для охлаждения необходим вентилятор.

Узнайте больше об этом типе двигателя здесь.

Источники:
Документы Джозефа Генри - Смитсоновский институт
Denver Electric Motor Company
Стив Нормандин
Википедия
Томас Дэвенпорт - доктор Фрэнк Уикс мл.
DIY Электромобиль


Связанные темы:

онлайн-курсов PDH.

PDH для профессиональных инженеров.ПДХ Инжиниринг.

«Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии

курсов. "

Russell Bailey, P.E.

Нью-Йорк

"Он укрепил мои текущие знания и научил меня еще нескольким новым вещам

, чтобы познакомить меня с новыми источниками

информации "

Стивен Дедак, П.E.

Нью-Джерси

«Материал был очень информативным и организованным. Я многому научился, и они были

.

очень быстро отвечает на вопросы.

Это было на высшем уровне. Будет использовать

снова. Спасибо. "

Blair Hayward, P.E.

Альберта, Канада

"Простой в использовании веб-сайт. Хорошо организованный. Я действительно буду снова пользоваться вашими услугами.

проеду по вашей роте

имя другим на работе "

Roy Pfleiderer, P.E.

Нью-Йорк

"Справочные материалы были превосходными, а курс был очень информативным, особенно потому, что я думал, что я уже знаком.

с деталями Канзас

Авария City Hyatt "

Майкл Морган, П.E.

Техас

«Мне очень нравится ваша бизнес-модель. Мне нравится просматривать текст перед покупкой. Я нашел класс

.

информативно и полезно

на моей работе »

Вильям Сенкевич, П.Е.

Флорида

«У вас большой выбор курсов, а статьи очень информативны. You

- лучшее, что я нашел."

Russell Smith, P.E.

Пенсильвания

"Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр

материал "

Jesus Sierra, P. E.

Калифорния

"Спасибо, что разрешили мне просмотреть неправильные ответы. На самом деле,

человек узнает больше

от сбоев."

John Scondras, P.E.

Пенсильвания

«Курс составлен хорошо, и использование тематических исследований является эффективным.

способ обучения »

Джек Лундберг, P.E.

Висконсин

"Я очень впечатлен тем, как вы представляете курсы, т.е. позволяете

студент для ознакомления с курсом

материалов до оплаты и

получает викторину."

Arvin Swanger, P.E.

Вирджиния

"Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

получил много удовольствия "

Mehdi Rahimi, P. E.

Нью-Йорк

"Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

в режиме онлайн

курса."

Уильям Валериоти, P.E.

Техас

"Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее наглядное представление о

обсуждаемые темы »

Майкл Райан, P.E.

Пенсильвания

"Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь."

Джеральд Нотт, П.Е.

Нью-Джерси

"Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

информативно, выгодно и экономично.

Очень рекомендую

всем инженерам »

Джеймс Шурелл, P. E.

Огайо

«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

не на основании какой-то неясной секции

законов, которые не применяются

до «нормальная» практика."

Марк Каноник, П.Е.

Нью-Йорк

«Отличный опыт! Я многому научился, чтобы перенести его на свой медицинский прибор.

организация "

Иван Харлан, П.Е.

Теннесси

«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

Юджин Бойл, П.E.

Калифорния

"Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

а онлайн формат был очень

Доступно и просто

использовать. Большое спасибо ".

Патрисия Адамс, P.E.

Канзас

"Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата."

Joseph Frissora, P.E.

Нью-Джерси

"Должен признаться, я действительно многому научился. Помогает иметь печатный тест во время

Обзор текстового материала. Я

также оценил просмотр

Предоставлено фактических случаев »

Жаклин Брукс, П.Е.

Флорида

"Документ" Общие ошибки ADA при проектировании объектов "очень полезен.Модель

Тест потребовал исследования в

документ но ответы были

в наличии »

Гарольд Катлер, П.Е.

Массачусетс

"Я эффективно использовал свое время. Спасибо за широкий выбор вариантов.

в транспортной инженерии, что мне нужно

для выполнения требований

Сертификат ВОМ."

Джозеф Гилрой, P.E.

Иллинойс

«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

Ричард Роадс, P.E.

Мэриленд

"Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.

Надеюсь увидеть больше 40%

курса со скидкой."

Кристина Николас, P.E.

Нью-Йорк

"Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать еще

курса. Процесс прост, и

намного эффективнее, чем

приходится путешествовать. "

Деннис Мейер, P.E.

Айдахо

«Услуги, предоставляемые CEDengineering, очень полезны для профессионалов

.

Инженеры получат блоки PDH

в любое время.Очень удобно ».

Пол Абелла, P.E.

Аризона

«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

время исследовать где на

получить мои кредиты от. "

Кристен Фаррелл, P.E.

Висконсин

«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

и графики; определенно делает это

проще поглотить все

теории »

Виктор Окампо, P.Eng.

Альберта, Канада

«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

.

мой собственный темп во время моего утро

до метро

на работу."

Клиффорд Гринблатт, П.Е.

Мэриленд

"Просто найти интересные курсы, скачать документы и взять

викторина. Я бы очень рекомендовал

вам на любой PE, требующий

Блоки CE "

Марк Хардкасл, П.Е.

Миссури

«Очень хороший выбор тем из многих областей техники."

Randall Dreiling, P.E.

Миссури

«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь

по ваш промо-адрес который

сниженная цена

на 40% "

Конрадо Казем, П. E.

Теннесси

«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

Charles Fleischer, P.E.

Нью-Йорк

"Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

коды и Нью-Мексико

правила. "

Брун Гильберт, П.E.

Калифорния

«Мне очень понравились занятия. Они стоили потраченного времени и усилий».

Дэвид Рейнольдс, P.E.

Канзас

"Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

при необходимости дополнительных

Сертификация . "

Томас Каппеллин, П.E.

Иллинойс

"У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

мне то, за что я заплатил - много

оценено! "

Джефф Ханслик, P. E.

Оклахома

"CEDengineering предлагает удобные, экономичные и актуальные курсы.

для инженера »

Майк Зайдл, П.E.

Небраска

"Курс был по разумной цене, а материал был кратким и

хорошо организовано. "

Glen Schwartz, P.E.

Нью-Джерси

"Вопросы подходили для уроков, а материал урока -

хороший справочный материал

для деревянного дизайна. "

Брайан Адамс, П.E.

Миннесота

"Отлично, я смог получить полезные рекомендации по простому телефонному звонку."

Роберт Велнер, P.E.

Нью-Йорк

«У меня был большой опыт работы в прибрежном строительстве - проектирование

Building курс и

очень рекомендую . "

Денис Солано, P.E.

Флорида

"Очень понятный, хорошо организованный веб-сайт. Материалы курса этики Нью-Джерси были очень хорошими

хорошо подготовлен. "

Юджин Брэкбилл, P.E.

Коннектикут

"Очень хороший опыт. Мне нравится возможность загрузить учебные материалы на

.

обзор везде и

всякий раз, когда."

Тим Чиддикс, P.E.

Колорадо

«Отлично! Поддерживаю широкий выбор тем на выбор».

Уильям Бараттино, P.E.

Вирджиния

«Процесс прямой, без всякой ерунды. Хороший опыт».

Тайрон Бааш, П.E.

Иллинойс

"Вопросы на экзамене были зондирующими и продемонстрировали понимание

материала. Полная

и всесторонний ».

Майкл Тобин, P.E.

Аризона

"Это мой второй курс, и мне понравилось то, что мне предложили этот курс

поможет по моей линии

работ."

Рики Хефлин, P.E.

Оклахома

«Очень быстро и легко ориентироваться. Я определенно буду использовать этот сайт снова».

Анджела Уотсон, P.E.

Монтана

«Легко выполнить. Никакой путаницы при прохождении теста или записи сертификата».

Кеннет Пейдж, П.E.

Мэриленд

"Это был отличный источник информации о солнечном нагреве воды. Информативный

и отличный освежитель ».

Luan Mane, P. E.

Conneticut

"Мне нравится подход к регистрации и возможность читать материалы в автономном режиме, а затем

Вернись, чтобы пройти викторину "

Алекс Млсна, П.E.

Индиана

"Я оценил объем информации, предоставленной для класса. Я знаю

это вся информация, которую я могу

использование в реальных жизненных ситуациях »

Натали Дерингер, P.E.

Южная Дакота

"Обзорные материалы и образец теста были достаточно подробными, чтобы позволить мне

успешно завершено

курс."

Ира Бродский, П.Е.

Нью-Джерси

"Веб-сайт прост в использовании, вы можете скачать материалы для изучения, а потом вернуться

и пройдите викторину. Очень

удобно а на моем

собственный график "

Майкл Гладд, P.E.

Грузия

"Спасибо за хорошие курсы на протяжении многих лет."

Деннис Фундзак, П.Е.

Огайо

"Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

Сертификат

. Спасибо за изготовление

процесс простой. »

Fred Schaejbe, P.E.

Висконсин

«Опыт положительный.Быстро нашел курс, который соответствовал моим потребностям, и прошел

часовой PDH в

один час "

Стив Торкильдсон, P.E.

Южная Каролина

"Мне понравилось загружать документы для просмотра содержания

и пригодность, до

имея для оплаты

материал . "

Ричард Вимеленберг, P.E.

Мэриленд

«Это хорошее напоминание об ЭЭ для инженеров, не являющихся электротехниками».

Дуглас Стаффорд, П.Е.

Техас

"Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

процесс, которому требуется

улучшение."

Thomas Stalcup, P.E.

Арканзас

"Мне очень нравится удобство участия в онлайн-викторине и получение сразу

Сертификат

. "

Марлен Делани, П.Е.

Иллинойс

"Учебные модули CEDengineering - это очень удобный способ доступа к информации по номеру

.

много разные технические зоны за пределами

своя специализация без

приходится путешествовать. "

Hector Guerrero, P.E.

Грузия

Концепция индукционных двигателей, используемых в качестве генераторов

Глава

  • 1 Цитаты
  • 116 Загрузки

Abstract

Принципиальное решение, использовать ли индукционный или синхронный генератор для выработки электроэнергии, зависит от большого количества параметров.Необходимо учитывать не только технические характеристики машин, но и систем, в которые генераторы будут подавать энергию. В зависимости от того, покрывает ли энергоблок малой гидроэлектростанции потребности в электроэнергии отдельного участка или небольшой деревни, или же он подключен к более крупной национальной или региональной сети, мы можем говорить об автономной и параллельной работе соответственно. Очевидно, что эти два режима работы предъявляют разные требования к генерирующей установке (которая обычно включает турбину, генератор, регулятор и оборудование электробезопасности и управления).

Это предварительный просмотр содержимого подписки,

войдите в

, чтобы проверить доступ.

Предварительный просмотр

Невозможно отобразить предварительный просмотр. Скачать превью PDF.

Информация об авторских правах

© Springer Fachmedien Wiesbaden 1992

Авторы и аффилированные лица

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *