Генератор из асинхронного двигателя с самозапиткой своими руками: Переделать асинхронный двигатель в генератор своими руками: какие материалы и инструменты нужны для этого

Содержание

Самодельный трехфазный генератор

В статье представлены различные варианты трехфазных генераторов, которые сделаны своими руками

Генератор из постоянных магнитов И. Белецкого

Генератор из асинхронного двигателя своими руками: 3 схемы

Товары для изобретателей. Предновогодние скидки до 60%🔥Перейти в магазин Ссылка.
Электрики давно научились извлекать пользу из принципа обратимости электрических машин: когда попадает в руки вроде бы ненужный трехфазный движок, то его можно раскрутить от бытовой сети или вырабатывать бесплатную электрическую энергию.
Эта статья рассказывает, как можно просто и надежно сделать генератор из асинхронного двигателя своими руками по одной из трех доступных схем, а в ее конце приведен видеоролик, автор которого воплотил в железе эту идею.
Однако там есть ошибочные выводы. Не повторяйте их.

Секреты подбора электродвигателя

Асинхронная машина может работать в режиме:

1. двигателя, когда на нее подается электрическое напряжение;
2. или генератора, если вращать ее ротор с определенной величиной крутящего момента от дополнительного источника. Им может быть любой двигатель внутреннего сгорания, водяная турбина, ветряное колесо или другой источник энергии.
Отработавшие на производстве трехфазные электродвигатели часто списывают. Они попадают в руки домашнего мастера практически бесплатно или по символической цене.
Ими не сложно воспользоваться для решения бытовых или хозяйственных задач. Потребуется только оценить конструкцию: возможности по выработке электроэнергии определенного напряжения и мощности от источника энергии с конкретным числом оборотов.
Для этого следует изучить характеристики статора и ротора.

Коротко о статоре

Конструкция статора асинхронного двигателя представлена:
· тремя обмотками, по которым проходит электрический ток;
· магнитопроводом из пластин электротехнического железа, созданному для передачи магнитного потока.



Соединение концов обмоток может выполняться схемой звезды либо треугольника. Каждый вариант имеет свои особенности. Их надо учитывать для различных условий эксплуатации.

Что надо знать о роторе

Он имеет три обмотки из изолированного провода. по которым протекают наводимые токи и формируют суммарный крутящий момент магнитного поля.
Эти обмотки могут быть:
1. выведены на внешние клеммы статора через контактные вращающиеся кольца с щеточным механизмом. Его называют ротором с фазной обмоткой;
2. короткозамкнуты встроенным алюминиевым кольцом — «беличье колесо».
Выглядят они следующим образом.


Для бытовых целей предпочтительнее использовать электродвигатель у которого работает короткозамкнутый ротор. О нем идет речь дальше.
Однако, если попалась в руки модель с фазным ротором, то ее легко переделать в короткозамкнутую: достаточно просто зашунтировать выходные контакты между собой.

Важные электрические характеристики

Чтобы сделать генератор из асинхронного двигателя стоит учесть:
· поперечное сечение провода обмотки.

Оно ограничивается тепловым воздействием от протекающих суммарных токов, формируемых как от активной нагрузки, так и реактивных составляющих;
· число оборотов, на которые рассчитан электродвигатель. Это оптимальная величина, котрой следует придерживаться при выборе подключения к источнику энергии;
· КПД, cos φ;
· схему подключения обмоток.
Эти величины указываются на табличке корпуса или рассчитываются косвенными методами.

Как работает двигатель в режиме генератора
При раскрутке ротора необходимо возбудить электромагнитное поле. Его добиваются за счет параллельного подключения к обмоткам емкостной нагрузки от батареи конденсаторов разными методами. Рассмотрим их.

Две схемы звезды

Типовое подключение выглядит следующим образом.

Упрощенный вариант схемы показан ниже.

Здесь применяют рабочий и пусковой конденсаторы, которые коммутируются собственными переключателями.

Схема треугольника

Она позволяет вырабатывать 220 вольт линейного напряжения.



Как подобрать конденсаторы
Емкость конденсатора для возбуждения генератора можно подсчитать по формуле, исходя из реактивной мощности, частоты и напряжения.
С=Q/2π∙f∙U2.
Следует учитывать, что они по разному влияют на нагрев обмоток в различных режимах. Поэтому для холостого хода и работы генератора используют ступенчатое переключение.
Рекомендуемые расчеты представлены таблицей.


Конденсаторную батарею рекомендую набирать из бумажных моделей на 500 вольт. Пользоваться электрическими конструкциями не рекомендую даже при включении каждой полугармоники через диод.
Электролит при нагревании может закипеть, что приведет к взрыву корпуса.

Особенности эксплуатации

Для безопасной работы необходимо:
· правильно подобать измерительные приборы;
· включить в схему защиты автоматический выключатель и УЗО;
· смонтировать схему резервного питания;
· правильно выбрать систему напряжения;
· избегать перегрузок за счет эффективного подключения потребителей;
· контролировать рабочую частоту на выходе.


Ее хорошо дополняет видеоролик Ильи Петровича. Обязательно посмотрите и ознакомьтесь с комментариями. Он допустил несколько характерных ошибок, а люди в своих комментариях указали на них. Надеюсь, что эта информация будет полезной для вас.
zen.yandex.ru

3-фазный генератор Марк 7

Видео канала GorillaGlass Live channel, который представил зрителям просто монстра – трехфазный генератор mark 7. Он сделан своими руками, но поразил с первого тестирования. Дело в том, что подключил сразу только 3 катушки. То есть подключил один трехфазный генератор из восьми, вывел трехфазный диодный мост. Проверка устройства проводится на велосипеде.

Самодельный трехфазный генератор односторонний.
Имеет 32 магнита 10х10.
24 катушки провод эмаль медь 0.8, сопротивление одной катушки 0.3 ома.
Материалы: сталь, алюминий, фанера, припой (пос 60), эпоксидная смола, лак паркетный износостойкий.
Инструменты: напильники, надфили, ножовка, циркуль, паяльник (100W), накирка, чертилка, линейка, молоток, рашпили, ручная дрель, сверла.
Посмотрим некоторые тесты. Сначала под напряжением, но большого не будет, потому что нужно по-другому делать не много, и будет хорошее напряжение. Немного покрутим. Слышите – он как самолет. Но 7 вольт, что разогнал – всего лишь работает 1 трехфазный генератор из восьми.

Почему один из трех? Статор состоит из 24 катушек, а ротот из 32 магнитов.
Давайте посмотрим на mark 5. Тот генератор был сделан на основе этого. У нас – вы знаете – 16 магнитов, 12 катушек, провод 0.4. Тут 32 магнита, 34 катушки – соединять можно как угодно. Видите, вывел все выводы – это большой плюс.
Что поразило в данном трехфазном генераторе – ток замыкания всего лишь трех катушек, и при том, что при этих 3.5 амперах катушки не греются.
Поставим. Ротор конечно надо будет балансировать – как ни крути – так как он бьет. Нужно заняться балансировкой – снимем ротор, магниты, напаяем, где надо, и будем стачивать.
Давайте покрутим – уже, видите, 1 ампер там. Слышите, он шумит, как самолет. С нормальной скоростью крутим 3. 5 ампера. Посидим 30 секунд, покрутим, и потрогаем катушки. Они были не нагретые нисколько. То есть, если сделаем 8 выводов – 8 плюсов и 8 минусов получится – и соединим все в параллель, то ток короткого замыкания без нагрева будет примерно 24 ампера. Представляете?
О динамо-машине статья.

Как сделать генератор из асинхронного двигателя своими руками? — журнал "Рутвет"

Оглавление:

  1. Чем хороши асинхронные генераторы?
  2. Генератор из асинхронного электродвигателя
  3. Ветрогенератор из асинхронного двигателя своими руками
  4. Самодельная электростанция из мотоблока

Асинхронным генератором называется работающий в генераторном режиме асинхронный электрический двигатель. Приводной двигатель вращает ротор асинхронного электрического генератора по направлению магнитного поля, вызывая тем самым отрицательное скольжение ротора, возникновение тормозящего момента и поступление электрической энергии в сеть.

Чем хороши асинхронные генераторы?

Асинхронные генераторы отличаются следующими преимуществами по сравнению с синхронными:

  • Более простое устройство по сравнению с синхронными, к примеру, автомобильными генераторами.
  • Если синхронные имеют на роторе индукционные катушки, то роторы асинхронных генераторов выглядят как обычные маховики.
  • Такие генераторы лучше защищены от попадания влаги и грязи.
  • Более устойчивы к коротким замыканиям, перегрузкам.
  • Напряжение на выходе у асинхронного электрогенератора имеет меньшую степень нелинейных искажений.

Видео о том, как из асинхронного двигателя сделать электрогенератор

Все перечисленные преимущества дают возможность использования асинхронных генераторов не только в качестве источников питания различных промышленных устройств, но и для питания электронной техники. Именно асинхронные генераторы являются идеальными источниками тока для приборов с активной (омической) нагрузкой — это и электронагреватели, и сварочные преобразователи, и лампы накаливания, и электронные устройства, компьютерная и радиотехника. Отсюда возникает вопрос: можно ли сделать асинхронный двигатель своими руками?

Генератор из асинхронного электродвигателя

У асинхронного электродвигателя отсутствует магнит на роторе, а на его месте там находятся короткозамкнутые витки. Поэтому с первого взгляда может показаться, что сделать из него генератор — неосуществимая задача. Однако, используя для этой цели конденсаторы, такую идею всё же можно воплотить в жизнь. Причем сделать генератор из асинхронного двигателя довольно просто.

Пошаговая инструкция

Шаг 1

Подключите к любой из трёх обмоток асинхронного электродвигателя вольтметр.

Затем следует раскрутить вал двигателя, в результате чего на вольтметре можно будет увидеть показатели, свидетельствующие о наличии появившегося напряжения. Откуда оно взялось, если ротор без магнита? Дело в том, что напряжение появляется в результате остаточной намагниченности ротора. Конечно, из-за небольшой намагниченности, напряжение также будет соответственно небольшим, значительно меньшим, чем номинальное напряжение питания двигателя.

Шаг 2

Генератором это пока назвать нельзя, но что будет, если попытаться с помощью короткозамкнутых витков ротора создать магнитное поле? Поскольку при использовании двигателя по назначению короткозамкнутые витки ротора получают ток и намагничиваются от переменного магнитного поля обмоток статора, то можно получить такой же эффект и при работающем двигателе в режиме генератора.

Шаг 3

Далее для того чтобы сделать генератор из асинхронного двигателя своими руками, нужно зашунтировать одну обмотку статора с помощью конденсатора. При этом конденсатор необходимо выбирать не электролитический.

Затем следует раскрутить вал, в результате чего начнётся выработка сначала небольшого напряжения на обмотке статора, а через некоторое время оно начнёт увеличиваться и сравняется с номинальным напряжением электродвигателя.

Лучшего результата можно добиться при равных величинах резонансной частоты колебательного контура и частоты генерируемого напряжения, зависящего от частоты вращения вала. При вращении вала с частотой, приближенной к номинальной для двигателя, показатели частоты генерируемого напряжения также будут близки к номинальным. Затем зашунтируйте конденсатором остальные обмотки на двигателе и соедините их.

Ветрогенератор из асинхронного двигателя своими руками

Ветрогенератор из асинхронного двигателя легко сделать своими руками. К тому же для его изготовления не потребуется значительных затрат. Очень часто самодельные конструкции ветряного генератора электричества сделаны именно по такому принципу, с использованием асинхронного двигателя.

  1. Суть переделки заключается в том, чтобы проточить ротор под магниты. Затем с помощью шаблонов осуществляют приклеивание магнитов к ротору, после чего для надёжности их следует залить эпоксидной смолой. Кроме того, можно взять более толстый провод и перемотать статор для уменьшения слишком большого напряжения и поднятия силы тока. Однако в данном случае используется не перемотанный двигатель, а переделан только ротор на магниты.

  1. Ротор следует проточить с помощью токарного станка на толщину магнитов. Этот ротор не имеет металлической гильзы, вытачиваемой и надеваемой обычно на него под магниты. Наличие гильзы необходимо для того чтобы усилить магнитную индукцию. С её помощью магниты замкнут свои поля питания, что предотвратит рассеивание магнитного поля снизу и всё пойдёт в статор. Эта конструкция состоит из очень сильных магнитов большого размера (7,6 х 6 мм). Количество магнитов — 160 штук. Поэтому даже без гильзы они будут обеспечивать хорошую ЭДС.

  1. Перед тем как приступить к наклейке магнитов, следует разметить ротор на 4 полюса, а магниты расположить наискосок.
  2. Поскольку статор в данном случае не был перемотан, то ротор должен быть так же, как и двигатель, четырехполюсным.
  3. Магнитные полюса следует чередовать (условно полюса обозначены как «север» и «юг»).
  4. Полюса магнитов должны иметь промежутки, поскольку в полюсах они были сгруппированы более плотно.
  5. После того как магниты будут размещены на роторе, нужно зафиксировать их с помощью скотча и эпоксидной смолы.
  6. Когда данная конструкция была собрана, оказалось, что ротор залипает при вращении вала. Чтобы избежать этого, магниты следует сбить вместе эпоксидкой и равномерно разместить по всей поверхности ротора.

  1. Для проверки готового генератора прокрутите его дрелью и подключите для нагрузки лампочку.

  1. Кроме того, для тестирования устройства можно подключить и кипятильник. Если всё было сделано правильно, то через минуту кручения вода, находящаяся в стакане, нагреется до горячего состояния.
  2. Теперь следует изготовить винт для ветряка. Для этого можно взять трубу ПВХ диаметром 160 мм и вырезать из неё лопасти согласно следующим данным (диаметр винта 1,7 м) :

  1. Для того чтобы закрепить генератор и хвост, потребуется металлическая стойка, оснащенная поворотной осью. Чтобы обеспечить увод ветроголовки от ветра, используется складной хвост, а генератор следует сместить от центра оси.
  2. Хвост будет одет на трубу, расположенную позади конструкции.

  1. На следующем фото представлен готовый генератор. Его следует установить на мачту, длина которой составляет около 9 метров.

  1. При достаточно сильном ветре устройство будет выдавать напряжение на холостом ходу приблизительно 80 вольт.
  2. Затем необходимо собрать контролёр и подключить через него аккумулятор для зарядки. Электрогенератор из асинхронного двигателя своими руками готов.

Видео о том, как сделать ветрогенератор из асинхронного двигателя своими руками

Самодельная электростанция из мотоблока

Многие умельцы вырабатывают электроэнергию с помощью мотоблока, которым обычно вспахивают и убирают огороды. Для воплощения в жизнь этой идеи потребуется асинхронный электрический двигатель (к примеру, серии АИР), используемый в качестве генератора. Как сделать генератор из асинхронного двигателя, описано в следующей инструкции:

  1. Возьмите электродвигатель с частотой вращения — 800-1600 об/мин, мощностью — 15 кВт.
  2. Двумя шкивами и приводным ремнём следует связать двигатель мотоблока с электродвигателем.
  3. Шкивы нужно подбирать такого диаметра, чтобы частота вращения электродвигателя в качестве генератора была на 10-15 % выше, чем паспортное значение числа оборотов электродвигателя.
  4. Затем следует включить конденсаторы параллельно каждой из пары обмоток, которые должны быть соединены звездой и образовывать треугольник.
  5. Снятие напряжения происходит между концом обмотки и средней точкой.
  6. Между обмотками получится 300 В, а между концом обмотки и средней точкой — 220В.
  7. Чтобы поддержать правильный режим работы генератора и пуска, нужно подобрать три конденсатора с одинаковой ёмкостью.

Соотношение мощности генератора и ёмкости конденсаторов:

Активная нагрузка иногда возможна и при одном конденсаторе. Для использования всех трех фаз, чтобы запитать однофазный инструмент, применяется трехфазный трансформатор. Если в процессе работы генератор будет сильно нагреваться, то ёмкость конденсаторов уменьшается. Рабочее напряжение конденсаторов должно быть не менее 400 В.

Видео о том, как сделать генератор из асинхронного двигателя

Если знать, как из асинхронного двигателя сделать электрогенератор, то с помощью таких энергетических установок можно также отапливать дом. Но для этого нужно будет использовать более мощный бензиновый двигатель.

А Вы уже пробовали сделать генератор из асинхронного двигателя? Получилось ли у Вас? Расскажите об этом в комментариях.

Ветрогенератор на базе асинхронного двигателя

Конструкция этого ветрогенератора, достаточно простая и надежная. Это первая попытка переделки асинхронного двигателя в генератор на постоянных магнитах. Как то разбираясь в подвале нашел движок старый, но совсем не пользованный. Решил на нем и потренироваться. Мощности большой с него не ждал, так как двигатель четырех полюсной. Но опыт и практика иногда важнее Киловатт.

Разобрал я его, все внутренности в приличном состоянии оказались, что порадовало.
Рассчитал какие магниты подходят (точнее какие доступнее из возможных), проточку ротора. Отдал ротор токарю, тот поколдовал над ним полчасика, и вот я обладатель заготовки.
Не торопясь рассчитал скос магнитного полюса. Если клеить магниты без скоса, то залипания будут сильные, и сдвинуть вал генератора ветер не сможет. Напечатал шаблон наклейки магнитов. Пробил отверстия. Наклеил на заготовку и начал клеить магниты.

Больших проблем не было. Все магниты наклеил за два вечера (по два часа с перерывами на пиво и прочие неотложные дела).

Утром обмотал ротор прозрачным скочем, начиная снизу, герметично, вверху немного оставил зазор. Залил не торопясь эпоксидку. Все получилось нормально. Запас при проточке ротора взял больше расчетного, и все равно оказалось мало. Ротор не захотел входить. Переклеивать магниты залитые смолой я не стал. Просто обточил аккуратно на наждаке на малых оборотах с водой (не рекомендую этого делать без крайней нужды, так как неодимовые магниты не терпят перегрева). Собрал генератор. Залипаний практически нет (двумя пальцами легко страгивается).
Генератор готов. Снимаем характеристики. Это первый замер, который я делал сразу после сборки. Гарантировать точность оборотов не могу, не было чем фиксировать точно.
Перед испытаниями
А эти замеры делал не так давно. Соединение -фазы выпрямлены и последовательно.

Теперь нужно было делать лопасти. Рассчитал их не я. Вот что вышло.
Диаметр турбины 1.7 метра, быстроходность Z 5.

Собрал головку, но проверить как? А руки чешутся. Взял генератор с установленными лопастями и полез на крышу не высокую. Ветра почти нет. Покрутился вместо флюгера, а ветерок возьми да дунь слегка. Кто нибудь держал генератор при вращающимся винте? И не надо. Отвернуться от ветра совсем не просто. В общем был похож на настоящего Карлсона (который живет на крыше ). Все кто наблюдал эту картину от души посмеялись, а мне было немного не по себе (и это мягко сказано).
В общем эта модель благополучно отработала несколько месяцев, потом демонтирована на реконструкцию. Ни каких повреждений не обнаружил.

Ну а сейчас он вот такой

Здесь небольшой видеоролик про этот Вертяк:

Ну а я продолжаю искать, испытывать и строить другие варианты, и остановиться уже не могу.
Наверно еще опишу другие конструкции.

Николай (507)

Россия, Московская область, Солнечногорск.

Просто человек. Мне сорок один год. Работаю. Люблю рыбалку. Живу в подмосковье. Делаю на досуге ветряки, поэтому и паяльник приходится держать. Возможно мой опыт в этом направлении может кому то пригодиться.

 

Асинхронный двигатель как генератор - суть процесса, его плюсы и минусы

В электротехнике существует так называемый принцип обратимости: любое устройство, которое преобразует электрическую энергию в механическую, может делать и обратную работу. На нем основан принцип действия электрических генераторов, вращение роторов которых вызывает появление электрического тока в обмотках статора.

Теоретически можно переделать и использовать любой асинхронный двигатель в качестве генератора, но для этого надо, во-первых, понять физический принцип, а во-вторых, создать условия, обеспечивающие это превращение.

Вращающееся магнитное поле – основа схемы генератора из асинхронного двигателя

В электрической машине, изначально создающейся как генератор, существуют две активные обмотки: возбуждения, размещенная на якоре, и статорная, в которой и возникает электрический ток. Принцип её работы основан на эффекте электромагнитной индукции: вращающееся магнитное поле порождает в обмотке, которая находится под его воздействием, электрический ток.

Магнитное поле возникает в обмотке якоря от напряжения, обычно подаваемого с аккумулятора, ну а его вращение обеспечивает любое физическое устройство, хотя бы и ваша личная мускульная сила.

Конструкция электродвигателя с короткозамкнутым ротором (это 90 процентов всех исполнительных электрических машин) не предусматривает возможности подачи питающего напряжения на обмотку якоря. Поэтому, сколько бы вы ни вращали вал двигателя, на его питающих клеммах электрического тока не возникнет.
Тем, кто хочет заняться переделкой асинхронного двигателя в генератор, надо создавать вращающееся магнитное поле самостоятельно.

Создаем предусловия для переделки

Двигатели, работающие от переменного тока, называют асинхронными. Все потому, что вращающееся магнитное поле статора чуть опережает скорость вращения ротора, оно как бы тянет его за собой.

Используя тот же принцип обратимости, приходим к выводу, что для начала генерации электрического тока вращающееся магнитное поле статора должно отставать от ротора или даже быть противоположным по направлению. Создать вращающееся магнитное поле, которое отстает от вращения ротора или противоположно ему, можно двумя способами.

Затормозить его реактивной нагрузкой. Для этого в цепь питания электродвигателя, работающего в обычном режиме (не генерации), надо включить, например, мощную конденсаторную батарею. Она способна накапливать реактивную составляющую электрического тока – магнитную энергию. Этим свойством в последнее время широко пользуются те, кто хочет сэкономить киловатт-часы.

Если быть точным, то фактической экономии электроэнергии не происходит, просто потребитель немного обманывает электросчетчик на законной основе.
Накопленный конденсаторной батареей заряд находится в противофазе с тем, что создается питающим напряжением и «подтормаживает» его. В результате электродвигатель начинает генерировать ток и отдавать его обратно в сеть. Использование высокомощных моторов в домашних условиях при наличии исключительно однофазной сети требует определенных знаний в том, как подключить трехфазный электродвигатель в сеть 220в.

Для одновременного подключения потребителей электроэнергии к трех фазам служит специальное электромеханическое устройство — магнитный пускатель, об особенностях правильной установки которых можно прочитать здесь.

На практике этот эффект применяется в транспорте на электрической тяге. Как только электровоз, трамвай или троллейбус идут под уклон, к цепи питания тягового электродвигателя подключается конденсаторная батарея и происходит отдача электрической энергии в сеть (не верьте тем, кто утверждает, что электротранспорт дорог, он почти на 25 процентов обеспечивает энергией сам себя).

Такой способ получения электрической энергии не есть чистая генерация. Чтобы перевести работу асинхронного двигателя в режим генератора, надо использовать метод самовозбуждения.

Самовозбуждение асинхронного двигателя и переход его в режим генерации может возникнуть из-за наличия в якоре (роторе) остаточного магнитного поля. Оно очень мало, но способно породить ЭДС, заряжающее конденсатор. После возникновения эффекта самовозбуждения конденсаторная батарея подпитывается от произведенного электрического тока и процесс генерации становится непрерывным.

Секреты изготовления генератора из асинхронного двигателя

Чтобы превратить электромотор в генератор надо использовать неполярные конденсаторные батареи. Электролитические конденсаторы для этого не годятся. В трехфазных двигателях конденсаторы включаются звездой или треугольником. Соединение «звездой» позволяет начать генерацию на меньших оборотах ротора, но величина напряжения на выходе будет несколько ниже, чем при соединении «треугольником».

Также можно сделать генератор из однофазного асинхронного двигателя. Но для этого годятся лишь те, которые имеют короткозамкнутый ротор, а для запуска используют фазосдвигающий конденсатор. Коллекторные однофазные двигатели для переделки в генератор не годятся.

Рассчитать в бытовых условиях величину потребной емкости конденсаторной батареи не представляется возможным. Поэтому домашний мастер должен исходить из простого соображения: общий вес конденсаторной батареи должен быть равен или немного превышать вес самого электродвигателя.
На практике это приводит к тому, что создать достаточно мощный асинхронный генератор почти невозможно, поскольку чем меньше номинальные обороты двигателя, тем он больше весит.

Оцениваем уровень эффективности — выгодно ли это?

Как видите, заставить электродвигатель генерировать ток можно не только в теоретических измышлениях. Теперь надо разобраться, насколько оправданы усилия по «изменению пола» электрической машины.

Во многих теоретических изданиях главным преимуществом асинхронных генераторов представляют их простоту. Честно говоря, это лукавство. Устройство двигателя ничуть не проще устройства синхронного генератора. Конечно, в асинхронном генераторе нет электрической цепи возбуждения, но она заменена на конденсаторную батарею, которая сама по себе является сложным техническим устройством.

Зато конденсаторы не надо обслуживать, а энергию они получают как бы даром – сначала от остаточного магнитного поля ротора, а потом – от вырабатываемого электрического тока. Вот в этом и есть главный, да и практически единственный плюс асинхронных генераторных машин – их можно не обслуживать. Такие источники электрической энергии применяются в домашних автономных электростанциях, приводимых в действие силой ветра или падающей воды.

Еще одним преимуществом таких электрических машин является то, что генерируемый ими ток почти лишен высших гармоник. Этот эффект называется «клирфактор». Для людей далеких от теории электротехники его можно объяснить так: чем ниже клирфактор, тем меньше тратится электроэнергии на бесполезный нагрев, магнитные поля и прочее электротехническое «безобразие».

У генераторов из трехфазного асинхронного двигателя клирфактор обычно находится в пределах 2%, когда традиционные синхронные машины выдают минимум 15. Однако учет клирфактора в бытовых условиях, когда к сети подключены разные типы электроприборов (стиральные машины имеют большую индуктивную нагрузку), практически невозможен.

Все остальные свойства асинхронных генераторов являются отрицательными. К ним относится, например, практическая невозможность обеспечить номинальную промышленную частоту вырабатываемого тока. Поэтому их почти всегда сопрягают с выпрямительными устройствами и используют для зарядки аккумуляторных батарей.

Кроме того, такие электрические машины очень чувствительны к перепадам нагрузки. Если в традиционных генераторах для возбуждения используется аккумулятор, имеющий большой запас электрической мощности, то конденсаторная батарея сама забирает из вырабатываемого тока часть энергии.

Если нагрузка на самодельный генератор из асинхронного двигателя превышает номинал, то ей не хватит электричества для подзарядки и генерация прекратится. Иногда используют емкостные батареи, объем которых динамически меняется в зависимости от величины нагрузки. Однако при этом полностью теряется преимущество «простоты схемы».

Нестабильность частоты вырабатываемого тока, изменения которой почти всегда носят случайный характер, не поддаются научному объяснению, а потому не могут быть учтены и компенсированы, предопределило малую распространенность асинхронных генераторов в быту и народном хозяйстве.

Функционирование асинхронного двигателя как генератора на видео

Ветрогенератор на базе асинхронного двигателя

Ветрогенератор является довольно простой и надежной конструкцией в плане источника автономной электрический энергии. Описанный в данной статье, тип генератора работает на постоянных магнитах и является переделанной моделью из асинхронного двигателя. Генератор сделан из старого четырех полюсного двигателя. Так как тут попытка такого преобразования – первая, то здесь не имела значения мощность двигателя, скорее дело в практическом применении и чистого интереса. Первым делом необходимо было разобрать двигатель. Удивило состояние деталей внутри конструкции – они были практически новые, что не могло не радовать.

Теперь необходимо было проточить ротор. Зачастую такую работу необходимо производить только, если имеются навыки токарного дела.Так как, таких навыков не имеется, пришлось обращаться за помощью к знакомому токарю.

Далее нужно было подобрать магниты и  рассчитать скос магнитного полюса. Скос делается для того, чтобы не происходило залипание. Как только все расчеты были проведены,  тут же распечатал шаблон и пробил отверстия.

Данный шаблон нужен для того, что бы показать места, где именно нужно клеить магниты. Если правильно рассчитать угол скоса, то проблем при проклейке магнита не должно возникать. В основном, такая работа займет не более двух часов.

Далее плотно обмотал ротор скотчем. Делать это следует снизу, плавно двигаясь вверх. И только на самом верху оставить зазор. Следом спокойно залил все это эпоксидной смолой, для достижения большей герметичности и надежности. Когда производится процесс проточки ротора, то необходимо брать запас раза в 1,5 – 2 больше расчетного. Все дело в том, что если мало сточить, что ротор просто не сможет войти. Можно, конечно сточить магниты, но в дальнейшем это может быть чревато перегревом генератора, так что лучше заранее позаботиться обо всех нюансах.

Теперь следует собрать генератор воедино и проверить возможность его оборотов. Достаточно просто провернуть ротор двумя пальцами. Обороты должны проходить легко, без залипания и трения. Теперь, когда конструкция полностью готова, можно приступать к процессу съема характеристик.

Естественно, при первых замерах нельзя гарантировать точные характеристики генератора, но все же примерно прикинуть достаточно. После того, как все характеристики сняты, можно приступать к изготовлению лопастей.

По данным характеристики можно отметить, что диаметр турбины будет соответствовать 1,7 метра, а быстроходность Z 5.

Изготовив полностью всю конструкцию, необходимо проверить ее работоспособность. Достаточно  проверить ее работу, заменив обычный флюгер. Здесь достаточно небольшого ветра, что бы генератор пришел в действие. Поэтому необходимо аккуратно установить конструкцию вместо флюгера и привести в действие. Как уже говорилось, наличие ветра лишь придаст эффектным оборотам данной конструкции, но главное, что бы в это время генератор был уже закреплен.

Данная конструкция сможет спокойно отработать в течении нескольких месяцев, причем без ремонта или замены конструктивных частей. Конечно, при условии, что все сделано правильно. После нескольких месяцев работы следует полностью проверить генератор.

Автор:  Нагорянский Александр Александрович.

Генератор из асинхронного двигателя сделать самому своими руками. Как переделать асинхронный двигатель в генератор



Генератор из асинхронного двигателя сделать самому своими руками. Как переделать асинхронный двигатель в генератор li { font-size:1.06rem; } }.sidebar .widget { padding-left: 20px; padding-right: 20px; padding-top: 20px; }::selection { background-color: #4f4f4f; } ::-moz-selection { background-color: #4f4f4f; }a,.themeform label .required,#flexslider-featured .flex-direction-nav .flex-next:hover,#flexslider-featured .flex-direction-nav .flex-prev:hover,.post-hover:hover .post-title a,.post-title a:hover,.sidebar.s1 .post-nav li a:hover i,.content .post-nav li a:hover i,.post-related a:hover,.sidebar.s1 .widget_rss ul li a,#footer .widget_rss ul li a,.sidebar.s1 .widget_calendar a,#footer .widget_calendar a,.sidebar.s1 .alx-tab .tab-item-category a,.sidebar.s1 .alx-posts .post-item-category a,.sidebar.s1 .alx-tab li:hover .tab-item-title a,.sidebar.s1 .alx-tab li:hover .tab-item-comment a,.sidebar.s1 .alx-posts li:hover .post-item-title a,#footer .alx-tab .tab-item-category a,#footer .alx-posts .post-item-category a,#footer .alx-tab li:hover .tab-item-title a,#footer .alx-tab li:hover .tab-item-comment a,#footer .alx-posts li:hover .post-item-title a,.comment-tabs li.active a,.comment-awaiting-moderation,.child-menu a:hover,.child-menu .current_page_item > a,.wp-pagenavi a,.entry.woocommerce div.product .woocommerce-tabs ul.tabs li.active a{ color: #4f4f4f; }.themeform input[type="submit"],.themeform button[type="submit"],.sidebar.s1 .sidebar-top,.sidebar.s1 .sidebar-toggle,#flexslider-featured .flex-control-nav li a.flex-active,.post-tags a:hover,.sidebar.s1 .widget_calendar caption,#footer .widget_calendar caption,.author-bio .bio-avatar:after,.commentlist li.bypostauthor > .comment-body:after,.commentlist li.comment-author-admin > .comment-body:after,.themeform .woocommerce #respond input#submit.alt,.themeform .woocommerce a.button.alt,.themeform .woocommerce button.button.alt,.themeform .woocommerce input.button.alt{ background-color: #4f4f4f; }.post-format .format-container { border-color: #4f4f4f; }.sidebar.s1 .alx-tabs-nav li.active a,#footer .alx-tabs-nav li.active a,.comment-tabs li.active a,.wp-pagenavi a:hover,.wp-pagenavi a:active,.wp-pagenavi span.current,.entry.woocommerce div.product .woocommerce-tabs ul.tabs li.active a{ border-bottom-color: #4f4f4f!important; } .search-expand, #nav-topbar.nav-container { background-color: #282828}@media only screen and (min-width: 720px) { #nav-topbar .nav ul { background-color: #282828; } } #header { background-color: #dddddd; } @media only screen and (min-width: 720px) { #nav-header .nav ul { background-color: #dddddd; } ]]>

Асинхронный генератор

Столкнувшись с проблемой выбора генератора, несомненно, вы также встретите такое понятие, как асинхронный генератор. Не все понимают его значение. Если мы обратимся к словарю для толкования, то найдем такое определение: асинхронный генератор - это электрическая машина, работающая в режиме генератора. Это вспомогательный источник электрического тока малой мощности и тормозное устройство. Ротор генератора приводится в движение приводным двигателем.Направление его вращения совпадает с магнитным полем, но происходит с большей скоростью. При скольжении ротора, которое приобрело отрицательное значение, на валу генератора появляется тормозной момент, и машина подает электричество в сеть. Для работы такого генератора требуется, чтобы в сети был генератор реактивной мощности, для которого синхронная машина подходит.

Чтобы выбрать генератор для дома и обеспечить его бесперебойным электричеством, необходимо ознакомиться с его параметрами.В первую очередь необходимо учитывать мощность генератора и общую нагрузку на него, сколько устройств он должен будет обеспечивать электричеством. К ним относятся самые необходимые в быту бытовые приборы: электрическая плита, освещение, чайник, бойлер. Необязательно подключать все устройства к сети одновременно, главное, чтобы мощности генератора хватало без сбоев для обеспечения их работы. При выборе необходимо ориентироваться на следующие характеристики: генератор асинхронный или синхронный, дизельный или бензиновый, мощность устройства и количество фаз.

Мощность генератора может быть рассчитана следующим образом: для этого требуется значение cosφ, которое имеет каждый электроприбор, разделенное на его мощность, указанную в его технических характеристиках. Вы также можете рассчитать мощность генератора.

Есть два типа генераторов: однофазные и трехфазные. Они предназначены для разных целей. Если вы используете трехфазный генератор, то необходимо обеспечить равномерную нагрузку между тремя фазами. При использовании однофазного генератора такой проблемы не возникает.Бензиновый генератор удобнее использовать в зимнее время, его бесперебойная работа равна восьми часам. В отличие от него дизель-генератор имеет большие энергоресурсы и рассчитан на более длительный срок службы.

Перед тем, как выбрать синхронный или асинхронный генератор, необходимо определить, каковы возможности генератора для обеспечения качественной работы с устройствами, потребляющими реактивную мощность, и насколько он выдерживает высокий пусковой ток. Синхронный генератор может вырабатывать как активную, так и реактивную мощность и вырабатывать электроэнергию.

Что такое индукционный генератор?

Индукционный генератор также известен как асинхронный генератор .Индукционная машина иногда используется в качестве генератора. Изначально индукционный генератор или машина запускается как двигатель. При запуске машина потребляет отстающие реактивные вольт-амперы из питающей сети. Скорость машины увеличивается по сравнению с синхронной скоростью с помощью внешнего первичного двигателя. Скорость увеличивается в том же направлении, что и вращающееся поле, создаваемое обмотками статора.

Индукционная машина будет работать как индукционный генератор и начнет вырабатывать крутящий момент.Этот генерирующий крутящий момент противоположен направлению вращения ротора. В этом случае скольжение отрицательное, и индукционный генератор начинает подавать энергию в сеть.

Характеристики крутящего момента трехфазной асинхронной машины для всех диапазонов скоростей показаны ниже.

В эквивалентной схеме асинхронного двигателя механическая нагрузка на валу заменена резистором с номиналом, указанным ниже.

В генераторе Induction Generato r скольжение (я) отрицательное, и, следовательно, сопротивление нагрузки R mech также отрицательное.Это показывает, что сопротивление нагрузки не поглощает мощность, а начинает действовать как источник энергии. Он начинает подавать электрическую энергию в сеть, к которой он подключен.

Мощность индукционного генератора зависит от следующих факторов, указанных ниже.

  • Величина отрицательного скольжения.
  • Скорость ротора или скорость вращения двигателя выше синхронной в том же направлении.
  • Вращение двигателя, когда он работает как асинхронный.

Из характеристики крутящего момента асинхронного двигателя видно, что максимально возможный индуцированный крутящий момент возникает в генераторном режиме. Этот крутящий момент известен как Pushover Torque . Если крутящий момент становится больше, чем крутящий момент толкания, генератор будет превышать скорость.

Индукционный генератор не является генератором с самовозбуждением. Для создания вращающегося магнитного поля необходимо возбудить статор внешним многофазным источником. Это достигается при номинальном напряжении и частоте, и машина предназначена для работы на скорости выше синхронной.Поскольку скорость асинхронного генератора отличается от синхронной скорости, он известен как асинхронный генератор .

Из характеристической кривой видно, что рабочий диапазон асинхронного генератора ограничен максимальным значением крутящего момента толкания, соответствующего скольжению на скорости OM, как показано на характеристической кривой крутящий момент-скорость.

Что такое синхронный генератор (асинхронный генератор)

Генератор - это устройство, преобразующее механическую энергию в электрическую.

Синхронный генератор, то есть генератор переменного тока (генератор переменного тока) с той же скоростью ротора, что и вращающееся магнитное поле статора. По конструкции его можно разделить на два типа: вращающийся якорь и вращающееся магнитное поле.

Синхронный генератор - один из наиболее часто используемых генераторов переменного тока. В современной энергетике он широко используется в гидроэнергетике, тепловой энергетике, атомной энергетике и дизельной энергетике.

Внешние характеристики синхронного генератора обычно относятся к кривой изменения напряжения на клеммах генератора, когда ток нагрузки изменяется в условиях постоянного внутреннего потенциала.Испытание в основном предназначено для проверки синхронного реактивного сопротивления вертикальной оси генератора, то есть внутреннего импеданса генератора. Это важный показатель синхронного генератора с нагрузочной способностью. Тем не менее, тиристорные обмотки быстрого возбуждения и демпфирующие обмотки в основном используются в синхронных генераторах, а синхронное реактивное сопротивление вертикальной оси в основном представляет собой переходное значение, которое намного меньше, чем значение установившегося режима.

Кроме того, из-за регулирующего действия системы возбуждения внешние характеристики могут быть искусственно созданы, которые могут быть положительными или отрицательными.Положительная внешняя характеристика заключается в том, что напряжение на клеммах уменьшается с увеличением тока нагрузки, а отрицательная - что напряжение на клеммах увеличивается с увеличением тока нагрузки. Систему общего возбуждения можно отрегулировать в пределах плюс-минус 15%.

Поскольку синхронный генератор обычно использует возбуждение постоянным током, когда отдельная машина работает независимо, напряжение генератора можно удобно регулировать, регулируя ток возбуждения.Если он включен в электрическую сеть, напряжение не может быть изменено, потому что оно определяется сетью. Результатом регулировки тока возбуждения в это время является регулировка коэффициента мощности и реактивной мощности двигателя.

Характеристики синхронного генератора - это в основном характеристики холостого хода и рабочие характеристики нагрузки. Эти характеристики являются важной основой для пользователей при выборе генераторов.

Классификация синхронных генераторов

Вращающийся магнитный полюс

(Большинство синхронных генераторов): полюс находится на роторе, а обмотка якоря - на статоре.Ротор подразделяется на:

Скрытый полюс: высокоскоростной двигатель (паровая турбина), распределенная обмотка;

Явный полюс: тихоходный двигатель (гидротурбина), сосредоточенная обмотка.

Вращающийся якорь

(малой емкости или специального назначения, например, возбудитель переменного тока синхронного двигателя): магнитный полюс находится на статоре, а обмотка якоря - на роторе.

Скорость изменения напряжения синхронного генератора составляет от 20 до 40%.Как промышленные, так и бытовые нагрузки требуют постоянного напряжения. По этой причине при увеличении тока нагрузки необходимо соответствующим образом регулировать ток возбуждения.

Конструкция

Конструкция синхронного генератора делится на высокоскоростную и низкую (среднюю) скорость в зависимости от его скорости.

Первый в основном используется на тепловых и атомных электростанциях; последнее в основном связано с тихоходными турбинами или дизельными двигателями. В конструкции высокоскоростного синхронного генератора используется ротор со скрытыми полюсами, а в синхронном генераторе с низкой (средней) скоростью используется ротор с явнополюсным ротором.

Принцип работы

(1) Создание основного магнитного поля: обмотка возбуждения соединена с постоянным током возбуждения, чтобы установить магнитное поле возбуждения между полярными фазами, то есть устанавливается главное магнитное поле.

(2) Токоведущий провод: Трехфазная симметричная обмотка якоря действует как силовая обмотка и становится носителем индуктивного потенциала или индуцированного тока.

(3) Режущее движение: Первичный двигатель приводит во вращение ротор (ввод механической энергии в двигатель), а магнитное поле возбуждения между полярными фазами вращается вместе с осью и последовательно разрезает фазные обмотки статора.

(4) Создание переменного потенциала: из-за относительного режущего движения между обмоткой якоря и основным магнитным полем в обмотке якоря индуцируется трехфазный симметричный переменный потенциал, величина и направление которого периодически меняются. Электропитание переменного тока может подаваться через подводящие провода.

(5) Значение эффекта индуктивного потенциала: эффективное значение наведенного потенциала для каждой фазы.

(6) Частота наведенного потенциала: частота наведенного потенциала определяется скоростью вращения и парами полюсов синхронного двигателя.

(7) Перекрестное изменение и симметрия: из-за полярности вращающегося магнитного поля полярность индуцированного потенциала меняется; симметрия обмотки якоря обеспечивает трехфазную симметрию наведенного потенциала.

(8) Синхронная скорость с точки зрения качества электроснабжения, частота сети переменного тока, состоящей из множества синхронных генераторов, включенных параллельно, должна быть постоянной величиной, что требует, чтобы частота генератора согласовывалась с частотой сетки.

Разница между синхронным генератором и асинхронным генератором

Синхронный генератор

Преимущества: Коэффициент мощности синхронного генератора можно регулировать. Применение большого синхронного генератора может повысить эффективность работы, когда регулирование скорости не требуется.

Недостаток : Стоимость выше, чем у асинхронного генератора.

Применение: Синхронный генератор в основном используется в дизель-генераторных установках.

Асинхронный генератор

Асинхронный генератор - это генератор переменного тока, в котором используется вращающееся магнитное поле воздушного зазора между статором и ротором для взаимодействия с наведенным током в обмотке ротора. По принципу работы его еще называют «индукционным генератором». Скорость немного выше синхронной скорости.

Преимущества: Асинхронный генератор - это генератор переменного тока, у которого отношение скорости нагрузки к частоте подключенной электросети непостоянно.Таким образом, он имеет преимущества простой конструкции, удобного изготовления, использования и обслуживания, надежной работы и низкой стоимости. Асинхронные генераторы обладают более высокой производительностью и лучшими рабочими характеристиками, что позволяет удовлетворить требования к трансмиссии большинства промышленного и сельскохозяйственного производственного оборудования из-за его близкой к постоянной скорости в диапазоне от холостого хода до полной нагрузки.

Недостаток: Поскольку скорость асинхронного генератора имеет определенную разницу со скоростью вращения магнитного поля, производительность регулирования скорости низкая.Более экономично и удобно использовать генераторы постоянного тока для транспортного оборудования, прокатных станов, крупных станков, печатного, красящего и бумагоделательного оборудования, для которых требуется широкий и плавный диапазон скоростей.

Применение: Асинхронный генератор применяется в ветроэлектростанциях и малых гидроэлектростанциях.

Примечание: Мы можем предоставить оригинальные Stamford, Leroy-Somer, SIEMENS, Marathon, ENGGA, Shanghai KEPU и синхронный генератор Starlight для энергетического оборудования.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *