Газогенератор на дровах – принцип работы и устройство
Газ, который мы часто используем для приготовления пищи, отопления дома и нагрева воды для хозяйственных нужд, добывается не только из недр земли. Его можно получить, сжигая некоторые природные материалы, к примеру, древесину, опилки, уголь, торф, отходы сельского хозяйства и прочее. Даже некоторые виды мусора пригодны для этого дела (старый паркет, линолеум некоторые виды пластика). Ведь при сгорании вышеуказанных материалов выделяется газ, который, если смешать в определенных пропорциях с кислородом, прекрасно горит и выделяет относительно большое количество тепловой энергии. Только для этого вам придется приобрести специальный вид отопительного оборудования – газогенератор на дровах.
Принцип работы
Итак, чтобы дрова в топке смогли выделить необходимое количество горючего газа, необходимо, чтобы они горели при небольшой подаче кислорода. По сути, топливо должно не гореть, а тлеть. Но при этом температура внутри камеры должна быть немаленькой, не меньше +1100°С. Это одно из основных условий.
С газами такой температуры работать очень сложно, ведь их качество достаточно низкое, чтобы использовать его по прямому назначению. Просто коэффициент полезного действия от их сжигания будет не очень большим, поэтому топочные газы обычно очищают. Но перед этим их необходимо немного охладить.
Горизонтальная модель газогенератора
Чистка газов производится на специальных фильтрах, где их очищают от золы, взвешенных частиц, кислот (муравьиной и уксусной) и других примесей. После чего они поступает в смесительную емкость, где производится смешение газов со свежим воздухом. И вот уже готовая воздушно-газовая смесь может быть использована по прямому назначению. Вот такой принцип работы газогенератора на дровах. Процесс не самый простой, поэтому и устройство данного агрегата непростое. Хотя многие домашние мастера изготавливают их своими руками.
Кстати, пиролизные котлы на твердом топливе – это одна из разновидностей газогенератора. Правда, в них отсутствует этапы охлаждения топочных газов и их очистка. Горючий материал сразу же из камеры сгорания дров попадает внутрь второй топки, где газы обогащаются кислородом и сжигаются. Для других целей газ не используется.
Достоинства и недостатки
Как и любой вид отопительного оборудования, газогенераторные котлы на твердом топливе обладают плюсами и минусами в конструкции и эксплуатации.
Простая конструкция
Достоинства
- Начнем с коэффициента полезного действия, как с самого основополагающего критерия эффективной работы агрегата. Так вот у пиролизных твердотопливных котлов он имеет диапазон 85-95%. Для сравнения: у обычных дровяных агрегатов КПД не превышает 65%. Коэффициент полезного действия определяет соотношение расхода топлива, которого хватает на выработку необходимого количества тепловой энергии. А она, в свою очередь, должна быть рационально использована для поддержания необходимого температурного режима внутри помещений. Вот такая сложная взаимосвязь.
- В газогенераторах топливо горит гораздо дольше, чем в обычных приборах.
Если в качестве топлива используются дрова, то продолжительность сжигания одной закладки может хватить на пару дней. С углем этот показатель гораздо больше, до одной недели.
-
- Обычно твердотопливные котлы плохо поддаются автоматизации. Регулировать процессы, происходящие внутри агрегата практически невозможно. В газогенераторных печах на дровах процесс горения можно автоматизировать. Конечно, это не так просто, как, скажем, с газовыми или электрическими отопительными приборами, но такая возможность присутствует.
- Так как угарные газы очищаются и сгорают, то это говорит о том, что в окружающую атмосферу попадает незначительное количество вредных веществ. На сегодняшний день это один из самых жестких требований, который пиролизными котлами на дровах полностью выполняются.
- Современные модели газогенераторов обладают различными преимуществами, которые выделяют их из общей категории твердотопливных котлов. К примеру, в топке некоторых моделей можно впихнуть поленья длиною больше одного метра и использовать древесину с влажность до 50%.
Устройство самодельного газогенератора
Недостатки
- Большой недостаток газогенераторных котлов на дровах – это сложность подачи воздуха в камеру смешения с угарными газами. Естественным способом это сделать очень трудно, поэтому практически все модели в своей конструкции используют механический надув при помощи вентилятора. А это говорит о том, что наш котел тут же переходит в категорию «энергозависимых агрегатов».
- Если упустить момент падения мощности, особенно, когда она падает ниже половины своего номинала, то на стенках камеры сгорания и в дымоходе тут же начинает образовываться деготь за счет сажи и конденсации влажных паров. Поэтому совет – всегда держите минимальный температурный режим в +60°С.
- Цена генераторов на дровах для дома выше обычных твердотопливных котлов практически вдвое. Конечно, есть предложения на рынке в виде самодельных отопительных приборов, но нет гарантии, что этот вариант будет работать эффективно и экономно. Так что не стоит рисковать.
Внимание! Выше уже говорилось, что автоматизировать газогенератор проще, чем классический твердотопливный котел. Добавим, что генератор с блоком автоматики работает в разы безопаснее.
Принципиальная схема обычного пиролизного котла
Разновидности дровяных генераторов
Существует достаточно большой модельный ряд газогенераторов, которые работают на дровах. Здесь и очень простые конструкции в виде буржуек, есть и сложные агрегаты, в которых проводятся все процессы: от сжигания дров до чистки топочных газов и их сгорания.
К примеру, твердотопливный котел-буржуйка. По сути, это обычная буржуйка с разделенной пополам топкой горизонтальной перемычкой, один конец которой не доходит до стенки печки. Остается небольшой зазор, по которому топочные газы перемещаются в верхнюю камеру сгорания. Вторая топка представляет собой систему каналов, по которым газы перемещаются снизу вверх. При этом они захватывают свежий холодный воздух, поступающий внутрь котла из нижних сопел. Здесь же и происходит смешение и получение воздушно-газовой смеси. Кстати, холодный воздух, проходя по соплам и каналам, тоже нагревается, так что волноваться, что смесь не загорится, нет причин.
Такая буржуйка хоть и обладает неплохим КПД, все равно является малопроизводительным отопительным агрегатом. Использовать ее для основной радиаторной системы отопления не рекомендуется. А вот для теплых полов она в самый раз.
Пиролизная печь буржуйка
Для основной отопительной системы лучше всего подойдут твердотопливные пиролизные котлы длительного горения. Основа их эффективной работы – это правильно проводимый процесс пиролиза в первой камере сгорания, куда закладываются дрова. Как уже было сказано выше, они в топке должны просто тлеть, ведь сюда поступает небольшое количество свежего воздуха.
От того, как правильно будет проведено размещение топлива и будет зависеть качество его сжигания. Поэтому рекомендуется дрова укладывать как можно ближе друг к другу, оставляя минимальные зазоры между ними. Чем меньше свободного пространства останется, тем лучше. Существует два вида укладки дров:
- Рядами в горизонтальной плоскости.
- В виде клети или колодца.
Итак, подведем итог. Газогенераторы, работающие на дровах — это неоспоримо наилучший вариант из категории «твердотопливных котлов». У них достаточно большое количество преимуществ перед другими моделями данной категории. Но хотелось бы отметить высокий КПД. Даже только из-за него можно было сделать выбор в сторону газогенератора.
Котельная на дровах - дровяной газогенератор от "ИЦ Тула"
Котлы на дровах HERLT серии HV - это эффективные дровяные газогенераторы.
Презентация использования газогенераторной отопительной системы.
Фотоматериалы по газогенераторной отопительной системе для теплиц.
Пример использования газогенераторной отопительной системы.
Камера заполнения
Благодаря большой двери, может удобно заполняться очень крупными поленьями. Колкой дров очень часто можно пренебречь. Серповидный откидывающийся вверх щиток в дверном проёме делает возможным отведение дыма при открытом клапане для отсоса дыма, благодаря всасывающему вентилятору, так что подкладка дров не доставит никаких неприятностей. Однако это нужно делать не очень часто. Газогенератор на дровах HERLT HV 35 заполняется 250 л колотых дров. Этого объема древесины твёрдых пород, который весит более 100 кг, достаточно для того, чтобы отапливать в течение двух дней средний, построенный по современным нормам дом на одну семью. При небольшом холоде или в доме с невысоким потреблением энергии (хорошо тепло изолированном доме) будет необходимо топить только через 3-4 дня или даже реже.
Камера сгорания
Поделена на верхнюю вихревую камеру и нижнюю длинную камеру дожигания. Когда горящие газы в процессе работы раскалены до 1000 градусов, нижняя камера сгорания раскалена до красно- белого каления. От стального охлаждаемого водой котла камера отделена, устойчивым к высоким температурам, изолирующим слоем. Горящие газы завихряются в две стороны и так возникает интенсивное свечение пламени. Благодаря этой запатентованной технологии происходит практически полное сгорание и чистейшие выхлопные газы.
Котел
Является современным дровяным газогенератором. На выходе из котла находится тихий, регулируемый по частоте вращения, вентилятор (1), который всасывает газы через камеру горения и теплообменные трубки. Этот принцип обеспечивает не только наилучшее сгорание, но и практически бездымное помещение, где происходит горение. Для розжига и подкладки дров используется клапан отсоса дыма (3), который открывается с обслуживаемой стороны, вентилятор тогда самостоятельно начнет работать на самых высоких оборотах. Теплообменные трубки расположены наклонно так, что на них не может откладываться зола, и затраты на их очистку очень небольшие. Но только с закрытым клапаном котёл горит на низ как газогенераторный. Сквозь покрытые огнестойкой легированной сталью решётчатые колосники, шлицевую дюзу, древесный газ попадает в керамическую вихревую камеру сгорания, материал которой является катализатором, который способствует горению, (то есть соединению газогенераторного газа и воздуха). Так возникает желтое свечение на внутренней поверхности. Снаружи котёл покрыт легированной (нержавейка) сталью, на внутренней поверхности которой нанесён 2 сантиметровый изолирующий слой из вспененного каучука. Благодаря этому в помещение, где происходит топка, не попадают вредные для здоровья минеральные волокна из котла.
Газогенераторы на дровах HERLT - качественные продукты.
Для изготовления котлов HERLT используются только материалы и инструменты производства стран членов ЕС наилучшего качества. Изготовление полностью происходит в Германии. Корпуса котлов от HV14 до HV65 свариваются на автоматизированной линии. Высокая толщина стенок стального корпуса котла приводят к тому, что котлы HERLT имеют значительный вес. Всё это, а также отсутствие образования в котлах конденсатов, способствуют максимально продолжительному периоду эксплуатации. Процесс горения происходит практически только в оболочке из высококачественной керамики. Решётчатые колосники на шлицевой дюзе (форсунке) изготовлены из огнеупорного металлического сплава, прокатанная оболочка котла состоит из прокатанной по образцу легированной стали и дополняет высокую устойчивость котла. Гарантия на корпус котла, электронику, вентилятор, колосники составляет 6 лет (по желанию – до 10 лет).
Электронное управление котла
Осуществляет управление вентилятором, подводом воздуха, насосами, измеряет температуру котла и исходящих газов и показывает это постоянно на большом табло. Желательный температурный режим может, само собой разумеется, устанавливаться владельцем (тем, кто топит). Таким образом, система может оптимально устанавливаться в зависимости от качества дров и дымовой трубы. При достаточной тяге в трубе котёл временами может работать только на естественной тяге. Все кабели и проводки изолированы термически устойчивым силиконом. Полихлорвинил полностью отсутствует в наших котлах.
Как обстоят дела с КПД
Теплотехники различают КПД котла, степень использования, а также технически возможный. КПД измеряется только при оптимальном горении в котле. В системах отопления, в которых присутствует только маленький накопитель, котлы очень часто горят продолжительное время, что также не оптимально. Древесина превращается в газ с 400град. С так же, когда закрыт регулировочный клапан и выключен вентилятор. Жар всегда имеет температуру выше, чем 400 градусов, так возникает газ, который покидает находящийся в «паузе» котёл не сожжённым. Так возникают потери в виде «древесного газа», которые почти удваивают потребности в топливе «дровах». Но котёл был испытан при температуре исходящих газов 140град.С и имел КПД 92,5 %. С холодными исходящими газами на практике не может использоваться почти ни одна дымовая труба, так как очень часто осаждается вода, кислоты и смола. Выход дымовой трубы, который стал мокрым, при следующей паузе в горении , может полностью заморозиться. Системы HERLT поэтому всегда устанавливаются так, что температура газов на выходе из трубы всегда составляет примерно 90 град.С. Домовладелец, если влезет на трубу и измерит температуру газов на выходе, и если она составляет ещё 107 град.С, он идёт в подвал и сокращает температуру на 17град.С. Теперь температура на выходе составляет 90 град.С и КПД улучшено на 1 % и таким образом сэкономлено 1% дров.
Дымовые трубы, выложенные из кирпича и проходящие через жилые этажи, отдают полезное тепло, только тепло , исходящие из верхнего среза дымовой трубы , рассматривается как действительные потери. Но и это мало имеет с место с эффективностью котла. Теоретически пользователь котла может установить температуру исходящих из котла газов 120град.С и тогда за кружкой пива утверждать, что его котёл имеет КПД 94%. Но счастливым пользователем он вряд ли при этом будет, так как начиная только со 170град.С температуры исходящих газов, котёл обретает способность к самоочищению, что очень важно для практического использования. Можно использовать старые, широкие, плохо изолированные дымовые трубы без дорогого ремонта при повышенной температуре исходящих газов. При примерно 235 град.С мы имеем КПД, равным всего лишь 86 %, потребляем примерно на 3% больше дров, но экономим на затратах на санацию трубы. Вы можете топить дровами с наибольшей рентабельностью благодаря простому и легко понятному регулированию котлов HERLT HV.
Для чего нужен теплоаккумулятор?
Котлы на жидком или газовом топливе останавливаются, если они выработали достаточное количество тепла. Но если дровяной газогенератор зажжён, он постоянно горит до тех пор, пока вся древесина не будет сожжена. Древесина превращается в газ примерно при 400 град. С независимо от того, открыт ли какой-то воздушный клапан или закрыт, крутится какой-то вентилятор или нет. Соотношение дровяного газа и воздуха довольно ограничено, и только в определённом соотношении они горят. Возникший газ незаметно покидает древесный котёл, зачастую не сожжённым. Так происходит значительное увеличение потребления древесины. Все внутренние поверхности системы сжигания топлива, и к ним же относится внутренняя поверхность дымовой трубы, должны быть всегда горячими для того, чтобы на них не образовывались конденсаты. Но с другой стороны они должны быть по возможности холоднее, чтобы снизитьтемпературу исходящих газов и достичь максимального КПД котла. Если котёл горит при полной нагрузке с минимальной температурой исходящих газов, нельзя полностью предотвратить того, что при снижении мощности температура исходящих газов на внутренних стенках снизится до температуры образования конденсата. Тогда может дымовая труба засмолиться и когда-нибудь загореться, в котёл падает вода и кислоты, которые преждевременно его разрушат. Сделайте возможным то, чтобы Ваш котёл всегда горел в оптимальном режиме. Это выгодно Вам, так как с возможно меньшим расходом древесины достигается длительный период эксплуатации котлов. Правильно подобранный теплоаккумулятор принимает всегда столько тепла, сколько производит котёл от одной закладки дров. Котёл HERLT HV 35 нагревает без дозакладки дров до 4 тыс. литров воды свыше 80град.С. Накопленного тепла в нём достаточно для обогрева дома на одну семью в течение двух зимних дней при небольшом морозе. Комфорт при топке возрастает и в дальнейшем, если теплоаккумулятор делается больше. Тогда, например, вечером около 18 часов, если для этого есть время, зажигается котёл.
Примерно в 10 часов докладываются дрова в котёл, который горит до следующего утра и нагревает больший аккумулятор, достаточный в большинстве случаев для многодневного перерыва в топке. Такая топка дровами комфортабельна не только для истопника. Просчитайте самостоятельно, насколько продлится период эксплуатации котла из-за того, что он так редко разжигается.
Газогенератор на дровах и теплоаккумулятор образуют котельную на дровах. Используя дополнительный теплообменник и центробежный вентилятор мы получим теплогенератор на дровах.
Котлы для метровых дров HV 49, HV 65.
Эти типы котлов вмещают в себя до 500 л поленьев, то есть половину кубометра. Этим можно с комфортом отапливать большие здания. Но эти котлы применяются и для отапливания небольших односемейных домов, при этом хозяева домов при минимальных затратах времени хотят сочетать приятное с экологически полезным. Тогда очень часто достаточно топить всего один раз в неделю. Котёл HV 49 имеет преимущество в том, что этот котёл устанавливается, не подпадая под предписание об отапливаемых помещениях (который действует, начиная от мощности начиная с 50кВт) и он при этом длительное время горит с хвойной древесиной 9-10 часов с дровами твёрдых пород 12-13 часов HV 65 имеет более высокую тепловую мощность. Оба котла заполняются преимущественно кругляшами. Которые могут быть при дозакладке длиной более 35 см и ограничиваются возможностью поднять дрова. Так как требования к влажности дров невысоки, поэтому в большинстве случаев можно пренебречь колкой, особенно это касается дров хвойных пород. При закладке метровые поленья ложатся на нижнюю канту дверного проёма и заталкиваются в котёл. При этом благодаря отсасыванию, вы не подвергаетесь воздействию дыма.
Маленький котёл длительного горения HV 14/15.
Этот новый разработанный для дров длинной до полутора метров котел, несмотря на низкую тепловую мощность, имеет очень большой объём наполнения дровами 300 литров, то есть больше, чем котёл HV 35. Но камера сгорания по сравнению с ним очень маленькая. Камера наполнения и газогенерации, а также камера сгорания высоко эффективно теплоизолированы против нежелательной отдачи тепла в воду котла. Благодаря этому этот котел горит при заполнении хорошими дровами без перерыва 24 часа. Это делает возможным развитие новых концепций для проектирования. В первый день дом на одну семью снабжается теплом без использования теплоакумулятора. Поэтому можно обходиться таким же теплоакумулятором или даже ограничиться меньшим. Накопитель может принимать тепло ночью, когда потребности в нём не большие, и отдавать на следующий день дополнительное тепло при еще работающем котле. Благодаря этому теплом от этого котла могут снабжаться дома, чья номинальная потребность в тепле не значительно превосходит тепловую мощность котла. С этой мировой новинкой благодаря высокому качеству древесного газогенераторного газа, высокоэффективной технологии камеры сгорания и длительного времени горения при стабильных параметрах достигнуты такие параметры исходящих газов, которые с уверенностью достигают допустимые пределы для отопления природным газом.
Котел, устанавливаемый на улице (вне помещений с дымовой трубой из нержавеющей стали модели ODIN)
Если котёл для отопления дровами установлен в подвале, то хозяин вынужден доставлять дрова естественно туда же, в подвал, не ожидая получить за это никакой оплаты. Транспортировка дров очень часто тяжёлая работа и будет значительно легче, если дрова можно было бы подвозить непосредственно на тачке к котлу, и если бы котёл был бы установлен недалеко от места хранения дров. Стоит котел на улице – нет поступления грязи в подвал, нет пыли от золы для домохозяек и подвал может быть использован для занятия хобби. Особенно это важно для домов из древесины, где необходима повышенная пожаробезопасность. Внешние части котла, которые входят во взаимодействие с неблагоприятными погодными условиями, выполнены из нержавеющей (легированной) стали или оцинкованы и имеют специальное покрытие. Наши котлы, устанавливаемые на улице, дополнительно изолированы насыпной теплоизоляцией. Также и у этого типа котлов могут предлагаться увеличенные двери камеры заполнения. Цвет окраски может выполняться по желанию клиентов. Под откидной крышкой располагается хорошо защищённая электронная система регулирования. Дымовая труба с двойными стенками в большинстве случаев выполняется выше, чем это представлено на иллюстрации (фотографии).
На заказ возможна так же поставка котлов для топки дровами полу метровой длины. Котлы ODIN, это котлы, с номинальной тепловой мощностью 49 и 65 киловатт. Трубы отопления в большинстве случаев прокладываются в земле и подходят к котлу снизу. Котлы должны устанавливаться так, чтобы при длительных перерывах в отоплении они не размораживались (не замерзали).
HV 66 и HV 100 - Котлы для топки дровами метровой длины и совместной топки маленькими соломенными тюками.
В котлах с номинальной мощностью 66 киловатт, камера заполнения имеет ёмкость 740 литров, которую можно заполнить дровами, и таким образом достигается очень продолжительное время горения. Так как дверной проём камеры очень большой в котле можно использовать в качестве топлива маленькие соломенные тюки, которые закладываются вручную, и могут быть до 90 см длинной и поперечном разрезе 50х50 или 40х60см. Эти котлы должны всегда разогреваться не загрязнённой древесиной. Только таким образом возможно при правильной эксплуатации добиться практически бездымного или близко к бездымному процесса разогрева котла. Можно продолжать далее топиться дровами но возможно доложить один или несколько соломенных тюков. Перед этим необходимо посмотреть в камеру сгорания, через смотровое оконце и убедиться в том, что она разогрелась до светло красного свечения, а котёл достиг полной рабочей температуры. Количества дров камере заполнения и газогенерации должно хватать минимум на один час горения, и так дрова и солома должны всегда сжигаться совместно. Если тюк несколько сыроват, то количество древесины в котле должно быть несколько больше, чтобы тюки, так сказать, просохли на огне дров. Тогда и такая солома горит хорошо. Но сырыми тюками или только тюками топить нельзя.
Этот котёл создаёт благодаря большому объёму заполнения высокий комфорт и делает возможным использование соломы, топлива часто имеющегося более чем в достаточном количестве, по очень доступной по цене системе отопления для малого теплопотребления. Закладка тюков соломы при уже горящем котле должна осуществляться только пользователем, который имеет определённый опыт и соблюдает правила пожарной безопасности при работе.
Сводная таблица газогенераторных котлов HERLT серии HV
Газогенераторные котлыHERLT серии HV |
15 |
22 |
35 |
49 |
65 |
66 |
100 |
145 |
||
Номинальная мощность |
кВт |
15 |
22 |
35 |
49 |
65 |
66 |
100 |
145 |
|
Рабочая мощность |
кВт |
13-18 |
14-25 |
22-40 |
40-49 |
50-72 |
55-75 |
80-115 |
120-180 |
|
Допустимое рабочее давление |
вar |
3 |
3 |
3 |
3 |
3 |
3 |
3 |
3 |
|
Масса котла без воды |
кг |
780 |
580 |
740 |
1332 |
1350 |
1550 |
1575 |
2300 |
|
Максимальная длина дров |
см |
55 |
55 |
55 |
105 |
105 |
105 |
105 |
120 |
|
Объём камеры заполнения |
л |
300 |
150 |
250 |
500 |
500 |
720 |
720 |
1200 |
|
Рекомендуемый объём накопителя |
л |
|
2500 |
4000 |
6000 |
7500 |
9000 |
10000 |
15000 |
|
Общая высота |
A |
мм |
1800 |
1500 |
1670 |
1860 |
1860 |
2240 |
2240 |
2500 |
Общая ширина |
B |
мм |
1070 |
812 |
955 |
1040 |
1040 |
1100 |
1100 |
1460 |
Общая глубина (длина) |
C |
мм |
1600 |
1700 |
1700 |
2550 |
2550 |
2550 |
2550 |
2700 |
Высота выхода трубы вентилятора |
D
|
мм |
1300 |
1100 |
1400 |
1500 |
1500 |
1930 |
1930 |
2100 |
Высота выхода трубы вентилятора |
E
|
мм |
1600 |
1500 |
1600 |
1700 |
1700 |
2130 |
2130 |
2500 |
Внутренний диаметр трубы выхода исх. |
мм |
169 |
169 |
169 |
238 |
238 |
238 |
238 |
286 |
|
Минимальная ширина транспортного пути |
мм |
890 |
824 |
824 |
824 |
824 |
864 |
864 |
1260 |
|
Диметр труб |
|
1“
|
1“ |
1“ |
1 1/2“ |
1 1/2“ |
1 1/2“ |
2“ |
2“ |
Большие котлы HV 145
Этим котлом могут отапливаться школы, предприятия, отели, животноводческие постройки и так далее. Древесина может быть длиной до 1200 мм, камера заполнения имеет объём 1200 литров, что пригодно для заполнения не измельчёнными евро-поддонами. Котёл, благодаря своим очень хорошим параметрам исходящих газов, хорошо пригоден для сжигания старой или загрязнённой древесины без включений и без частиц искусственных материалов. Чтобы закладка дров, не смотря на высоту котла, была возможной, котёл, как правило, устанавливается в яму глубиной примерно 65 см. Отличительная особенность данного котла – очень высокая экономичность, достигаемая этой системой. Требования к подготовке топлива и качество его минимальны. Такое топливо можно приобрести в больших количествах и очень выгодно. Его легко можно хранить на открытых площадках. Котлы данного типа могут так же поставляться в мобильном исполнении в обогревательных контейнерах, особенно для промышленного теплоснабжения.
Большие котлы HV 130, 195, 300, 450
В этом котле была увеличена камера заполнения и газогенерации до почти 4 кубометров древесины метровой длины. При тепловой мощности 230 кВт котёл горит непрерывно в течение 24 часов. Котёл HV 195 в лучшем виде приспособлен для удовлетворения потребностей таких больших потребителей как теплицы или животноводческие фермы, а так же больших общественных зданий и тепловых сетей, особенно при продаже тепловой энергии. Котёл также устанавливается заглублённо. В поперечном разрезе котёл выглядит точно так же как и другие котлы серии HV. Рекомендуется устанавливать на открытых площадках с постройкой над ними лёгких сооружений. Подкладка дров при выгорании до среднего уровня невозможна, сначала это происходит только по полному сгоранию. Выход газов и дыма при открытой двери заполнения не исключается. Благодаря данному котлу можно ежедневно заменить 800 литров жидкого топлива. Экономический эффект для пользователя данного котла очень высок.
Розжиг
Газогенераторы HERLT сначала разжигаются и только затем заполняются. Для этого необходима пригоршня мелко наколотой сухой древесины для розжига. Она кладётся на колосники камеры заполнения, а на неё сверху – средство для разжигания угля, газетная бумага или нечто подобное, но не гофрированный картон или солома, которые всегда дымят (чадят). Затем нажимают зелёную кнопку старта на пульте управления котла, включается вентилятор и продувает пламя сверху вниз через горящую древесину. Дверь камеры загрузки открыта, котёл сразу горит в режиме газообразования, с избытком воздуха и практически бездымно. Теперь истопник идёт за дровами и, когда он через 3 минуты возвращается к печи, небольшая горсточка древесины будет вся гореть. Теперь можно производить полную загрузку камеры заполнения. При этом нужно обращать внимание на правило, что древесина, которую закладывают, должна загореться снизу от уже горящей древесины, иначе произойдёт уменьшение газообразования или даже затухание пламени. Итак, процесс не пойдёт, если на небольшое количество «стартовой» древесины сразу же положить толстый слой сырой дубовой древесины, потому что «стартовая» древесина полностью сгорит до тех пор, пока загорится дубовая древесина.
Итак, сначала кладут древесину получше, т. е. не такую крупную и сырую, а вот толстый дуб пойдёт после.
Дозагрузка древесины
Благодаря большому объёму камер заполнения это производится не так часто. Если котёл горит, можно закладывать толстые кругляки. Камеры загрузки и газообразования имеют внутри керамическую обшивку, которая снижает до минимума теплоотдачу в воду. Так внутри сохраняется высокая температура, и процесс газообразования протекает лучше. Дрова могут быть грубее и влажнее.
Экономьте свои силы при подготовке дров!
У многих только вечером появляется свободное время для топки. У котлов с большей мощностью по отношению к объёму загрузки, как, например, HV 22, 35 или 65 уже по истечении 4 часов половина дров сгорает. Поэтому в этот же вечер перед тем, как идти спать, можно произвести дозагрузку, благодаря чему будет больше тепла, и запасов его в большом теплоаккумуляторе хватит на длительный перерыв в топке – несколько дней.
Какие же дрова лучше всего подходят для газогенераторов HERLT
Лучше всего, если Вы примените самые дешёвые дрова из тех, что можете получить.
В кавалерии говорят: «Если уж всадник ни на что не годен, должен хотя бы конь быть хорошим».
В сфере древесного отопления это значит: «По-настоящему хороший дровяной котёл справится и с плохими дровами», то есть с теми, что влажнее, грубее, легче, хуже горят.
Раньше считалось правилом: «Дерево греет троекратно». Старые дровяные печи всегда требовали хороших дров, лучше всего берёзу или бук, мелко наколотые и заботливо высушенные в течение 2 лет.
Но у кого сегодня достаточно времени для этого?
Благодаря керамической внутренней обшивке газогенераторов HERLT внутренняя температура камер заполнения и газообразования гораздо выше, чем у котлов, имеющих металлические стены, охлаждаемые водой. Поэтому процесс газообразования протекает намного интенсивнее, и требования к дровам очень незначительны.
Особенно толстая изоляционная обшивка у малого аппарата HV 15. Этот котёл обеспечивает самую высокую степень комфортности, но не является самым дешёвым. Если его «кормить» мелкими очень сухими, хорошо горящими дровами, он воспримет это как не свойственное ему обращение, и его управление достигнет своих границ.
Исходя из этого, мы просим своих клиентов, интересующихся этой топ-моделью, о следующем:
Пожалуйста, купите себе другой дровяной котёл, если Вы «дровяные спортсмены» и как экс-чемпион мира по боксу Мохаммед Али хотите поддерживать свою форму постоянной колкой дров.
Теплота сгорания дров
|
|
При 20 % влажности (воздушно-сухие)
|
При 50% влажности (свежесрубленные) |
(кВтч/кг) |
(кВтч/м3) |
(кВтч/м3) |
|
белый бук |
4,2 |
2200 |
1930 |
красный бук |
4,2 |
2100 |
1850 |
дуб |
4,2 |
2100 |
1850 |
ясень |
4,2 |
2100 |
1850 |
рябина |
4,2 |
2100 |
1850 |
берёза |
4,3 |
1900 |
1670 |
вяз |
4,1 |
1900 |
1670 |
клён |
4,1 |
1900 |
1670 |
ольха |
4,1 |
1500 |
1300 |
Ива (верба) |
4,1 |
1400 |
1230 |
тополь |
4,1 |
1400 |
1230 |
дуглазия |
4,4 |
1700 |
1500 |
сосна |
4,4 |
1700 |
1500 |
лиственница |
4,4 |
1700 |
1500 |
пихта |
4,4 |
1600 |
1400 |
сосна |
4,4 |
1500 |
1300 |
Топите большей частью лёгкой и очень дешёвой древесиной, такой как тополь, ива или ольха. У котлов HERLT большие камеры загрузки, которые вместят в себя много килограммов.
Котлы таких размеров находят применение особенно в частных домах
HN 13 неэлектрический естественный котел и как таковой является самым дешевым дровяным котлом.
Котлы серии HV настоящие газогенераторы. Это лучшие во всем мире дровяные котлы, они являются абсолютными лидерами по таким параметрам, как объем наполнения, нетребовательность к качеству дров, качество отходящих газов, долговечность и простота использования. А также неповторимый фирменный технологически обоснованный дизайн воспринимается абсолютно гармонично.
Рынок для этих котлов образуют особенно большие и претенциозные частные дома, новые и старые здания. В Восточной Европе строятся новые довольно большие, комфортабельные дома на одну семью. Для такого строительства наш котел лучшее решение. Таких домов будет построено десятки тысяч.
Природный газ, где он применяется, из-за низкой цены на газ является наиболее привлекательным решением. Непредсказуемый для потребителей рост цен на газ, экологические катастрофы, такие, как лесные пожары в России, усилия правительства, все это ведет хотя очень медленно к изменениям в мышлении, и делает обогрев дровами все более интересным и добавляет шик состоятельным людям.
Котлы серии HV предлагают для 20% новых зданий лучшее решение. В Восточной Европе будет построено, по крайней мере, 250 000 новых домов в год. Для 20% из них, т.е. 50.000, котел HV верное и лучшее решение. Рынок везде, где есть достаточно древесины и особенно в районах, где нет залежей природного газа. Все страны имеют также регионы с лесными массивами и значительными запасами древесины. Традиционные страны, обогревающиеся дровами, - страны Балтии, Чехия, Словакия, Россия, а также южная Германия, частично Франция и Северная Европа.
Все эти котлы предназначены для работы на дровах. HV 100 и HV 145 загружаются вручную кругляками длиной 1 м, HV400 предназначен для вязанок дров, которые загружаются трактором с фронтальным погрузчиком.
Эти котлы имеют очень низкие требования к качеству древесины. Почти все может быть использовано, в том числе свежая древесина, отходы и дефектный лесоматериал, в HV400 можно загрузить также корни деревьев, деревянный лом узким, длинным ковшом фронтального погрузчика или щепу через систему загрузки.
HV 100 также используется в очень больших жилых домах. HV 145 нагревает старые усадьбы, но особенно хороши для коммерческих объектов, таких как отели, свинарники, школы или малые предприятия.
Широкий ассортимент типов обогревательных котлов позволяет нам представить клиенту очень хорошие предложения для почти любого случая использования.
Газогенератор для дома на дровах
Ранее газогенератор был распространённым устройством. Связано это было с тем, что природный газ был далековато не во всех районах, а оборудование, работающее на нём, было надо кое-чем запитывать. Привозить в качестве горючего баллонный газ было не всегда может быть, а дрова, стружка, опилки, торф доступны фактически везде на местности нашей страны.
На данный момент, когда природный газ доступен фактически везде, ну и доставка баллонного не составляет огромных заморочек, газогенератор потихоньку стал забываться. Но, время диктует свои коррективы.
Политика цен газовых монополистов, поборы со стороны чиновников привели к тому, что генераторный газ опять нужен. Газогенератор для дома на дровах будет достойной кандидатурой баллонному газу, и в почти всех случаях установка его экономически намного более прибыльна, чем покупка газа в баллонах.
Работа газогенератора
Итак, давайте разглядим работу газогенератора. В простом виде это маленький аппарат, цилиндрической формы, устанавливающийся вертикально. В нижней части его имеется колосниковая решётка и поддувальное отверстие. В средней выполнен патрубок для подачи воздуха, которая обычно осуществляется с помощью электровентилятора. В высшей части – патрубок для отбора газа. Также там размещено отверстие для загрузки горючего в газогенератор.
Также нужна система клапанов и фильтров. Клапаны необходимы для того, если вы собираетесь использовать только часть газа, а излишки можно было бы отводить через дымопровод в атмосферу. Если вы планируете использовать газогенератор только для готовки на плите – этого полностью довольно.
В то же время, если вы планируете использовать его для работы какого-то дополнительного оборудования, нужно подключить два фильтра – фильтр грубой чистки и циклонный.
Также вам необходимо будет предугадать систему остывания газа, потому что его температура составляет примерно 300-500 градусов. Это необходимо для того, чтоб газ не повреждал резиновые патрубки и подводки при работе. Отбираемое тепло можно использовать для отопления такого же помещения, где установлен газогенератор. Не считая того, сам газогенератор при работе выделяет в помещение существенное количество тепла.
Несколько советов
Сгорание горючего в генераторе будет неполным. При горении происходят несколько реакций. В нижней части газогенератора находится зона горения. Чуток выше – зона окисления. В конце концов, в зоне, где в газогенератор принудительно подаётся воздух, размещена зона восстановления. Здесь-то и появляется генераторный газ.
Газогенератор может употребляться для выработки электроэнергии с помощью маленький газовой турбины. Газовую турбину, хотя и достаточно недешево, можно приобрести в магазинах.
Такая схема будет намного компактнее, чем паровой котёл для электрогенератора на дровах, и для неё не будет нужно огромное количество воды. В принципе, если вы планируете использовать связку газогенератора и турбины достаточно длительно, это полностью окупаемое предприятие. Не считая того, вы не будете зависеть от центрального электро- и газоснабжения.
Незначительно о безопасности
Газогенератор для дома на дровах – это маленькое устройство, которе можно расположить даже на столе. Такового размера будет полностью довольно для маленького дома. Если вы планируете использовать газ также для подогрева помещения, вам необходимо получать аппарат несколько огромных размеров. Также вероятна работа газогенератора, как альтернативного либо дополнительного источника энергии для промышленного производства. Газогенератор можно приобрести в продаже, либо сделать на заказ у спеца.
Видео о газогенераторе
Комментирование и размещение ссылок запрещено.
Дровяные котлы для дома - газогенераторные котлы на дровах
Среди владельцев загородной недвижимости стали очень популярны газогенераторные котлы на дровах. Такие котлы гораздо более эффективны, чем обычные котлы, работающие на твердом топливе. Кроме того, газогенераторные котлы предоставляют возможность плавной регулировки мощности. В то же время эти установки имеют повышенные требования к качеству топлива.
Принцип работы
В основу работы газогенераторных котлов на дровах положен принцип работы котла пиролизного. Другие названия этих котлов — пиролизная печь, печь длительного горения вполне оправдывают свои названия.
При сгорании органического топлива, выделяются различные летучие вещества.
В обычной печке эти вещества вместе с тепловой энергией покидают топочную через дымоход, а в пиролизном котле эти соединения направляются в отдельную камеру, где подвергаются процедуре сгорания. При сгорании газа образуется дополнительное количество тепловой энергии. Благодаря этому КПД газогенераторных печей достигает 93%, что является абсолютно недостижимым показателем для обычных твердотопливных котлов.
Источником тепла для котлов дровяных длительного горения служат дрова, уголь, кокс и пеллеты. Однако дрова наиболее богаты на летучие соединения, поэтому именно применение древесины позволяет добиться максимальных показателей КПД.
Процесс пиролиза возможен при температуре не менее +800С. При таких сверхвысоких температурах из древесины происходит выделение бензола, ацетона, метилового спирта и еще ряда других соединений.
Чаще всего эти соединения называют «древесным газом».
Важно иметь в виду, что для процесса пиролиза в котле дровяном длительного горения должен быть дефицит кислорода, поэтому следует с особой тщательностью следить за герметичностью газогенераторных котлов. Использование такой технологии в обычных котлах применить невозможно, поэтому для этих целей выпускаются специальные газогенераторные котлы.
Строение котлов
Газогенераторные котлы на дровах поделены на две камеры. В первой камере сгорает твердое топливо, а во второй происходит догорание газа. После загрузки печи поджигаются дрова. Когда они начинают стабильно гореть, включается режим дымоотсоса.
Благодаря этому в дровяном котле для дома возникнет дефицит кислорода, а дрова при этом перестанут гореть — начнут медленно тлеть.
В момент тления из дров будет интенсивно выделяться «древесный газ».
Образованный при тлении газ будет направлен в специальную газовую камеру. В газовой камере, в отличие от дровяной, кислорода достаточно. Благодаря этому происходит резкое возгорание газа с выделением большого количества тепловой энергии.
Часть тепла будет отдаваться в дровяной котел для дома — в камеру с дровами для поддержания процесса горения, а вторая часть пойдет на нагрев теплоносителя.
Недостатки пиролизных котлов
На первый взгляд такая схема отопления кажется идеальной, но не все так просто. Для образования «древесного газа» требуется топливо, имеющее определенный физико-химический состав — в частности, влажность дров должна быть не выше 20%. Следует сказать, чтобы дрова имели такой процент влажности, они должны сохнуть не на протяжении 1-2 лет.
Кроме того, такие котлы дровяные длительного горения являются энергозависимыми — из-за электрического дымоотсоса. Иногда можно обойтись без электричества, но тогда потребуется строительство высокого дымохода.
Существенным недостатком этих котлов является их очень высокая стоимость — минимальная стоимость такого котла начинается с отметки в 60 т.р.
Некоторые владельцы считают, что высокая стоимость котла быстро окупается за счет экономии топлива, ведь на одной закладке дров такой котел способен работать около трех дней!
Автомобиль на дровах или газогенераторные автомобили, можно ли сделать своими руками
История создания и развития, примеры авто на дровах
Несмотря на медленное продвижение темы газогенераторных машин, история таких разработок весьма богатая. Так, еще в 1823 году российский изобретатель Овцын И.И. разработал аппарат для перегонки древесины. В его основу легла самая обычная «термолампа».
Главной особенностью установки стало применение в ней главных продуктов пиролиза — светильного газа, уксусной кислоты и дегтя, а также древесного угля.
Почти через сорок лет (в 1860 году) свой вклад в науку сделал Этьен Ленуар — бельгийский официант с инженерными «наклонностями». Именно он первым приобрел патент на ДВС, функционирующий на светильном газе.
Но он занимался не только этими разработками.
Еще через два года установка новоиспеченного гения появилась на 8-местном открытом омнибусе.
Но в 1878 году, когда публике был представлен более мощный 4-тактный двигатель на газе Николаса Отто, разработка Этьена Ленуара быстро забылась. При этом у нового устройства был более высокий КПД: 16% у Отто против 5% у Ленуара.
Еще через два десятка лет, в 1883 году (от 1860 года), появилась новая концепция сочетания обычного ДВС и газогенератора.
Английскому ученому Э. Даусону удалось объединить два устройства в одной коробке.
Получившийся аппарат можно было смело устанавливать на любую технику и спокойно эксплуатировать. Со временем разработка Э. Даусона получила название «газа Даусона».
В 1891 году отличился Яковлев Евгений (лейтенант Российского флота). Ему удалось выстроить целый завод по производству керосиновых и газовых моторов. Местом для строительства стал Санкт-Петербург.
Со временем завод прекратил существований из-за невозможности устоять в конкуренции с бензиновыми и дизельными моторами.
1900-й можно смело назвать годом выпуска первого газогенераторного автомобиля, использующего древесный уголь и дерево в виде топлива.
Аппарат был разработан во Франции Фредериком Уинслоу Тейлором, а патент удалось получить немного позже (в 1901 году).
В последующем появлялись все новые и более интересные разработки в данной сфере. Так, в 1919 году Георг Имберт (инженер французского происхождения) разработал газогенератор обращенного типа.
Уже в 1921 году появились первые автомобили с моторами, работающими на данном принципе. Именно тогда возникли предположения о вероятной конкуренции газогенераторного авто с дизельными или бензиновыми моторами.
Со временем отличилась и Германия, где в период войны получили распространение не только дровяные газогенераторы, но и устройства, способные работать на специальных брикетах, состоящих из буроугольной пыли и крошки.
Первые грузовые авто с газогенераторами были весьма медлительными — им едва ли удавалось достичь скорости в 20 километров в час.
Несмотря на это, к 1938 году популярность газогенераторных авто была настолько большой, что общее число таких машин насчитывалось около девяти тысяч.
Еще через три года (к 1941 году) их число возросло еще в пятьдесят раз. К примеру, в той же Германии количество машин «на дровах» выросло до 300 тысяч экземпляров.
Старался не отставать и Советский Союз. Здесь первые испытания газогенераторных авто прошло в 1928 году. В машине был задействован мотор Наумова и шасси Фиат-15.
Еще через шесть лет был организован первый большой пробег машин с газогенераторными моторами от Москвы до Ленинграда и обратно.
В «забеге» принимали участие автомобили ЗИС-5 и ГАЗ-АА. Успех мероприятия послужил принятию в 1936 году специального постановления СНК СССР о разработке газогенераторных тракторов и машин.
ГАЗ – АА.
ЗИС – 5.
Первая партия новых газогенераторных машин появилась на дорогах СССР в 1936 году.
Производство осуществлялось на двух заводах — Горьковском (ГАЗ-42) и на ЗИС (заводе имени Сталина).
Спустя пять лет был налажен выпуск газогенераторных моторов для тракторов и машин ЗИС.
К недостаткам силовых узлов можно было отнести множественные заводские дефекты, высокую скорость износа металла, минимальную мощность и так далее.
С другой стороны, газогенераторные установки очень помогли в войну и активно применялись в тылу.
Основные особенности
Газогенераторный двигатель имеет несколько неоспоримых положительных особенностей. Во-первых, топливо для устройства очень дешевое. Во-вторых, во время эксплуатации прибора появляется зола, которую можно использовать в качестве удобрения, к примеру. В-третьих, автомобилю не потребуется установка мощных химических аккумуляторов.
Газогенераторные двигатели доказали свое право на существование уже очень давно. На сегодняшний день их показатели, конечно же, сильно уступают новым моделям, работающим на бензине. Однако для большинства рядовых автолюбителей вполне могут подойти. Газогенераторная установка позволит развить скорость до 100 км/ч, приблизительный максимальный пробег составит около 100 км. Чтобы повысить этот параметр, придется возить на заднем сиденье дополнительные мешки с дровами и периодически вручную добавлять «топливо» в бак.
Как работает устройство
Принцип работы газогенератора — синтез газа. Это процесс, в ходе которого, горючий газ будет образовываться при сгорании органического материала. Для того чтобы запустить такой процесс, необходимо достичь нужной температуры. Синтез газа начинается при достижении показателя в 1400 градусов по Цельсию. В качестве топлива для газогенераторного двигателя могут использоваться торф, брикеты с углем и некоторые другие материалы. Однако, как показала практика, наиболее распространенным и удобным материалом в качестве топлива выступает древесина. Хотя здесь стоит отметить, что дрова обладают одним недостатком — уменьшение заряда рабочей смеси. Вследствие этого несколько понижается и мощность установки.
Можно добавить, что двигатель на дровах такого типа обычно используется с уже установленным ДВС.
Как создавались газогенераторные установки?
Француз Филипп Лебон выделил светильный газ в конце 18 века. В 1801 году он получил патент на газовый двигатель, но построить его не смог по причине насильственной смерти. Совершенствованием конструкции генератора и двигателя занимались многие европейские инженеры в течение 19 века. Первым во Франции построил газогенераторный автомобиль инженер Тейлор в 1900 году.
Впоследствии газогенераторные автомобили прошли два этапа повышенного спроса, приведшего к тому, что наличие таких автомобилей в мире стало исчисляться сотнями тысяч. Активная работа по совершенствованию газогенераторных установок, и созданию автомобилей с их применением, велась в СССР различными заводами и институтами. Результатом этой работы стало появление наиболее совершенных, по меркам того времени, установок.
Правительственное задание предписывало Горьковскому автозаводу в 39-м году выпустить 10 тысяч грузовиков с газогенераторной установкой модели НАТИ Г-14, которая могла работать на древесном топливе. Московскому ЗИС нужно было выпустить 8 тысяч газогенераторных ЗИС-5 с установкой ЗИС-21. Нехватка бензина вынудила строить газовые машины, названные народом «газгены».
В газогенераторе одновременно образуются горючие газы, к которым относятся окись углерода, водород и метан, не горючие — кислород и азот, а так же водяные пары. Такой состав снижает концентрацию горючих ингредиентов в смеси и её калорийность. Для повышения концентрации горючих газов требуется охлаждение смеси газов и отделение воды, что производится в соответствующих отделах установки и делает её громоздкой.
Конструкция установки
Чтобы успешно эксплуатировать авто на дровах или сжигать полученное топливо в котле, одного газогенератора недостаточно. Дело в том, что помимо балластных газов, самодельное горючее содержит летучие примеси и смолы, проще говоря, — дым и сажу. Ни автомобильный мотор, ни горелочное устройство котла не рассчитано на такое топливо и быстро выйдет из строя. Поэтому была придумана система фильтрования, входящая в состав газогенераторной установки и включающая 3 дополнительных агрегата:
- фильтр грубой очистки – циклон;
- радиатор – охладитель;
- фильтр тонкой очистки.
Очередность размещения этих элементов показана на технологической схеме:
Циклон для газогенератора представляет собой вертикальный цилиндр с двумя патрубками и конусом на конце, как показано на чертеже. Загрязненная газовая смесь, попадая внутрь него, движется по кругу на высокой скорости, за счет чего крупные и средние частицы золы отбрасываются на стенки центробежной силой и выводятся через отверстие в конусе.
Схема работы циклона, который очищает силовой газ от примесей
Чем выше температура газа, тем меньше его плотность. Это значит, что горючее на выходе из газгена нельзя использовать в ДВС без предварительного охлаждения, иначе оно просто не воспламенится в цилиндрах. Поэтому в промышленных газогенераторных установках сразу после циклона ставится воздушный либо водяной теплообменник, а следом – компрессор, нагнетающий охлажденную газовую смесь в распределительную емкость.
В конце технологической цепочки стоит фильтр тонкой очистки, удаляющий из полученного топлива мелкие частицы сажи и золы. Пример такого агрегата – так называемый скруббер, в котором газы очищаются за счет продувания через воду. Теперь, когда мы разобрались с технологией производства горючего, можно сделать собственную недорогую установку, способную обеспечить работу двигателя внутреннего сгорания на дровах.
Самодельный газген, изготовленный заграничными коллегами
Технические показатели
Если стоит выбор, к примеру, между покупкой автомобиля с традиционным двигателем или с газогенератором, то нужно подробно остановиться на рассмотрении технических данных второго варианта.
Масса двигателя на дровах достаточно большая, из-за чего теряется некоторая часть маневренности. Этот недостаток становится опасным, если развивать большую скорость. По этой причине доводить автомобиль даже до 100 км/ч не слишком разумное решение — придется ездить медленнее. Есть еще несколько важных технических данных такого оборудования.
Газовый двигатель, работающий на дровах, обладает большей степенью сжатия, чем грузовые бензиновые двигатели. Что касается мощности, то газогенератор, естественно, проигрывает бензиновому мотору.
Последнее отличие не в пользу газовой модели — это грузоподъемность, в которой он также проигрывает автомобилю с бензиновым двигателем.
Здесь еще важно отметить, что древесный газ характеризуется низкой энергетической ценностью, если сравнивать его с природным. Авто на дровах будет неизбежно терять в динамических свойствах, что также следует учитывать водителю такого транспортного средства.
Некоторые предпочитают установку объемного газогенератора осуществлять на прицеп, а не на сам автомобиль. В таком случае и быстро разогнаться не получится, и маневрировать особо не выйдет. Прицеп будет являться своеобразным ограничителем.
Изготовление газгена для автомобиля
Перед тем как сделать работоспособный газогенератор для автомобиля, предлагаем ознакомиться с некоторыми рекомендациями:
- Организовать подачу силового газа в современном авто с инжектором – задача непростая. Придется менять настройки контроллера (прошивку), иначе мотор на древесном топливе работать не будет. Нужна машина со старой системой топливоподачи – карбюратором.
- Чем больше мощность и рабочий объем двигателя, тем выше производительность должна быть у газогенератора. Соответственно, он вырастет в размерах.
- Чтобы уместить установку в багажник легкового авто, потребуется вырезать часть днища. Если вы не хотите затрагивать кузов, то сразу планируйте ставить дровяной генератор с фильтрами и охладителем на прицеп.
- Для изготовления камеры газификации, где температура превышает 1000 °С, применяйте низкоуглеродистую толстую сталь (4—5 мм).
- Чтобы уменьшить содержание смол в газовой смеси, делайте камеру с горловиной, как это показано на чертеже.
Важный момент. Не стоит увеличивать диаметр камеры газификации (на чертеже он равен 340 мм) с целью добиться большей производительности. Прирост получится мизерный, а качество переработки древесины ухудшится. А вот высоту 183 см выдерживать не обязательно, разве что вы поставите агрегат на прицеп или на раму грузовика. Топливный бункер и зольник можно укоротить.
Для сборки внутренней части автомобильного газогенератора (бункера) сгодится старый пропановый баллон, ресивер от грузовика КаМАЗ или толстостенная труба. Учитывая, что диаметр стального сосуда равен 300 мм, остальные размеры нужно пропорционально уменьшить. Исключение – камера газификации, ее минимальный диаметр составляет 140 мм. На кожух и крышку генератора пойдет металл толщиной 1.5 мм. Последняя уплотняется графитно-асбестовым шнуром.
Варианты охладителей горючей смеси из автомобильного радиатора и батареи отопления
Сопутствующие агрегаты – фильтры и охладители – делаются так:
- Циклон сварите из отработавшего огнетушителя или отрезка трубы диаметром 10 см, как это изображено на чертеже. Входной патрубок приделайте сбоку, выпускной – сверху.
- Охладитель силового газа лучше сделать из стальных труб в виде змеевика. Есть и другие варианты: использование старых конвекторов, батарей отопления и радиаторов.
- Фильтр тонкой очистки изготовьте из любой цилиндрической емкости (например, бочки), наполненной базальтовым волокном.
Более детальную информацию о сборке газогенератора своими силами вы получите, посмотрев видео:
Для розжига и запуска газгена вам потребуется вентилятор в виде улитки, устанавливаемый в моторном отсеке (для испытаний сойдет и бытовой пылесос). К нему требование простое: детали, соприкасающиеся с газовой смесью, должны быть металлическими. Топливная магистраль, ведущая к карбюратору, прокладывается под днищем авто и выполняется из стальной трубы.
Для справки. Если вместо дров использовать древесный уголь, то примесей на выходе газогенератора будет значительно меньше, что хорошо для двигателя. Такое топливо выжигается из дерева по простой технологии – в закрытой бочке или яме.
Бункер для древесного угля помещается в багажник «Жигулей»
Типы газогенераторов
Для разных видов топлива были разработаны газогенераторы соответствующих типов:
— газогенераторы прямого процесса газификации;
— газогенераторы обращенного (обратного, или «опрокинутого») процесса газификации;
— газогенераторы поперечного (горизонтального) процесса газификации.
Газогенераторы прямого процесса газификации
Основным преимуществом газогенераторов прямого процесса являлась возможность газифицировать небитуминозные многозольные сорта твердого топлива – полукокс и антрацит.
В газогенераторах прямого процесса подача воздуха обычно осуществлялась через колосниковую решетку снизу, а газ отбирался сверху. Непосредственно над решеткой располагалась зона горения. За счет выделяемого при горении тепла температура в зоне достигала 1300 – 1700 С.
Над зоной горения, занимавшей лишь 30 – 50 мм высоты слоя топлива, находилась зона восстановления. Так как восстановительные реакции протекают с поглощением тепла, то температура в зоне восстановления снижалась до 700 – 900 С.
Выше активное зоны находились зона сухой перегонки и зона подсушки топлива. Эти зоны обогревались теплом, выделяемым в активной зоне, а также теплом проходящих газов в том случае, если газоотборный патрубок располагался в верхней части генератора. Обычно газоотборный патрубок располагали на высоте, позволяющей отвести газ непосредственно на его выходе из активной зоны. Температура в зоне сухой перегонки составляла 150 – 450 С, а в зоне подсушки 100 – 150 С.
В газогенераторах прямого процесса влага топлива не попадала в зону горения, поэтому воду в эту зону подводили специально, путем предварительного испарения и смешивания с поступающим в газогенератор воздухом. Водяные пары, реагируя с углеродом топлива, обогащали генераторный газ образующимся водородом, что повышало мощность двигателя.
Газогенераторы обращенного (опрокинутого) процесса газификации.
Газогенераторы обращенного процесса были предназначены для газификации битуминозных (смолистых) сортов твердого топлива – древесных чурок и древесного угля.
В генераторах этого типа воздух подавался в среднюю по их высоте часть, в которой и происходил процесс горения. Отбор образовавшихся газов осуществлялся ниже подвода воздуха. Активная зона занимала часть газогенератора от места подвода воздуха до колосниковой решетки, ниже которой был расположен зольник с газоотборным патрубком.
Зоны сухой перегонки и подсушки располагались выше активной зоны, поэтому влага топлива и смолы не могли выйти из газогенератора, минуя активную зону. Проходя через зону с высокой температурой, продукты сухой перегонки подвергались разложению, в результате чего количество смол в выходящем из генератора газе было незначительным. Как правило, в газогенераторах обращенного процесса газификации горячий генераторный газ использовался для подогрева топлива в бункере. Благодаря этому улучшалась осадка топлива, так как устранялось прилипание покрытых смолой чурок к стенкам бункера и тем самым повышалась устойчивость работы генератора.
Газогенераторы поперечного (горизонтального) процесса газификации.
В газогенераторах поперечного процесса воздух с высокой скоростью дутья подводился через фурму, расположенную сбоку в нижней части. Отбор газа осуществлялся через газоотборную решетку, расположенную напротив фурмы, со стороны газоотборного патрубка. Активная зона была сосредоточена на небольшом пространстве между концом формы и газоотборной решеткой. Над ней располагалась зона сухой перегонки и выше – зона подсушки топлива.
Отличительной особенностью газогенератора этого типа являлась локализация очага горения в небольшом объеме и ведение процесса газификации при высокой температуре. Это обеспечивало газогенератору поперечного процесса хорошую приспособляемость к изменению режимов и снижает время пуска.
Этот газогенератор, так же как и газогенератор прямого процесса, был непригоден для газификации топлив с большим содержанием смол. Эти установки применяли для древесного угля, древесноугольных брикетов, торфяного кокса.
Наибольшее распространение получили газогенераторные установки обращенного процесса газификации, работавшие на древесных чурках.
Примером такого газогененератора может служить газогенератор устанавливавшийся на ГАЗ-42
Газогенератор ГАЗ-42 состоял из цилиндрического корпуса 1, изготовленного из 2-миллиметровой листовой стали, загрузочного люка 2 и внутреннего бункера 3, к нижней части которого была приварена стальная цельнолитая камера газификации 8 с периферийным подводом воздуха (через фурмы).
Нижняя часть газогенератора служила зольником, который периодически очищался через зольниковый люк 7.
Воздух под действием разрежения, создаваемого двигателем, открывал обратный клапан 5 и через клапанную коробку 4, футорку 6, воздушный пояс и фурмы поступал в камеру газификации 8. Образующийся газ выходил из-под юбки камеры 8, поднимался вверх, проходил через кольцевое пространство между корпусом и внутренним бункером и отсасывался через газоотборный патрубок 10, расположенный в верхней части газогенератора.
Равномерный отбор газа по всей окружной поверхности газогенератора обеспечивался отражателем 9, приваренным к внутренней стенке корпуса 1 со стороны газоотборного патрубка 10.
Для более полного разложения смол, особенно при малых нагрузках газогенератора, в камере газификации было предусмотрено сужение – горловина. Помимо уменьшения смолы в газе, применение горловины одновременно приводило к обеднению газа горючими компонентами сухой перегонки.
На величину получаемой мощности влияла согласованность таких параметров конструкции газогенератора, как диаметр камеры газификации по фурменному поясу, проходное сечение фурм, диаметр горловины и высота активной зоны.
Газогенераторы обращенного процесса применяли и для газификации древесного угля. Вследствие большого количества углерода в древесном угле процесс протекал при высокой температуре, которая разрушительно действовала на детали камеры газификации.
Для повышения долговечности камер газогенераторов, работающих на древесном угле, применяли центральный подвод воздуха, снижавший воздействие высокой температуры на стенки камеры газификации.
Функциональные зоны газогенератора
Все внутреннее пространство агрегата можно условно поделить на четыре отдела:
- Зона просушки. Своего рода камера подготовки топлива, в которой те же дрова обретают оптимальную температуру без излишков влаги. Обычно температурный режим на этом участке составляет 150-200 °С.
- Зона сухой перегонки. Еще один этап подготовки твердотельного топлива, но в условиях более высокого температурного режима до 500 °С. На этой стадии газогенераторная установка обугливает дрова с целью выведения из них смол, кислот и других нежелательных веществ.
- Зона горения. Этот отдел размещается на уровне подключения воздушных каналов, по которым направляется воздух для поддержания стабильности горения. Конструкционно это обычная камера сжигания, которая присутствует во всех твердотопливных котлах. Средняя температура в ней варьируется от 1100 до 1300 °С.
- Зона восстановления. Участок между колосниковой решеткой и камерой сгорания. По аналогии с современными пиролизными котлами можно представить этот отдел как место повторного сгорания. Сюда из зоны сжигания попадает раскаленный уголь, который может выниматься или тут же утилизироваться.
Принцип работы автомобильной газогенераторной установки
Автомобильная газогенераторная установка состояла из газогенератора, грубых очистителей, тонкого очистителя, вентилятора розжига и смесителя. Воздух из окружающей среды засасывался в газогенератор тягой работающего двигателя. Этой же тягой выработанный горючий газ «выкачивался» из газогенератора и попадал сначала в грубые очистители охладители, затем – в фильтр тонкой очистки. Перемешавшись в смесителе с воздухом, газо-воздушная засасывалась в цилиндры двигателя.
Охлаждение и грубая очистка газа
На выходе из газогенератора газ имел высокую температуру и был загрязнен примесями. Чтобы улучшить наполнение цилиндров «зарядом» топлива, газ требовалось охладить. Для этого газ пропускался через длинный трубопровод, соединявший газогенератор с фильтром тонкой очистки, или через охладитель радиаторного типа, который устанавливался перед водяным радиатором автомобиля.
Охладитель радиаторного типа газогенераторной установки УралЗИС-2Г имел 16 трубок, расположенных вертикально в один ряд. Для слива воды при промывке охладителя служили пробки в нижнем резервуаре. Конденсат вытекал наружу через отверстия в пробках. Два кронштейна, приваренные к нижнему резервуару, служили для крепления охладителя на поперечине рамы автомобиля.
В качестве простейшего очистителя использовался циклон. Газ поступал в очиститель через патрубок 1, распологавшийся касательно к корпусу циклона. Вследствие этого газ получал вращательное движение и наиболее тяжелые частицы, содержащиеся в нем, отбрасывались центробежной силой к стенкам корпуса 3. Ударившись о стенки, частицы падали в пылесборник 6. Отражатель 4 препятствовал возвращению частиц в газовый поток. Очищенный газ выходил из циклона через газоотборный патрубок 2. Удаление осадка осуществлялось через люк 5.
Чаще всего в автомобильных газогенераторных установках применяли комбинированную систему инерционной очистки и охлаждения газа в грубых очистителях – охладителях. Осаждение крупных и средних частиц в таких очистителях осуществлялось путем изменения направления и скорости движения газа. При этом одновременно происходило охлаждение газа вследствие передачи тепла стенкам очистителя. Грубый очиститель-охладитель состоял из металлического кожуха 1, снабженного съемной крышкой 2. Внутри кожуха были установлены пластины 3 с большим количеством мелких отверстий, расположенных в шахматном порядке. Газ, проходя через отверстия пластин, менял скорость и направление, а частицы, ударяясь о стенки, оседали на них или падали вниз.
Грубые охладители-очистители последовательно соединяли в батареи из нескольких секций, причем каждая последующая секция имела большее количество пластин. Диаметр отверстий в пластинах от секции к секции уменьшался (РИСУНОК 5Г).
Вентилятор розжига
В автомобильных установках розжиг газогенератора осуществлялся центробежным вентилятором с электрическим приводом. При работе вентилятор розжига просасывал газ из газогенератора через всю систему очистки и охлаждения, поэтому вентилятор старались разместить ближе к смесителю двигателя, чтобы процессе розжига заполнить горючим газом весь газопровод.
Вентилятор розжига газогенераторной установки автомобиля УралЗИС-352 состоял из кожуха 6, в котором вращалась соединенная с валом электродвигателя крыльчатка 5. Кожух, отштампованный из листовой стали, одной из половин крепился к фланцу электродвигателя. К торцу другой половины был подведен газоотсасывающий патрубок газогенератора 4. Газоотводящий патрубок 1. Для направления газа при розжиге в атмосферу и при работе подогревателя – в подогреватель к газоотводящему патрубку был приварен тройник 3 с двумя заслонками 2.
Фильтры тонкой очистки
Для тонкой очистки газа чаще всего применяли очистители с кольцами. Очистители этого типа представляли собой цилиндрический резервуар, корпус 3 которого был разделен на три части двумя горизонтальными металлическими сетками 5, на которых ровным слоем лежали кольца 4, изготовленные из листовой стали. Процесс охлаждения газа, начавшись в грубых очистителях – охладителях, продолжался и в фильтре тонкой очистки. Влага конденсировалась на поверхности колец и способствовала осаживанию на кольцах мелких частиц. Газ входил в очиститель через нижнюю трубу 6, и пройдя два слоя колец, отсасывался через газоотборную трубу 1, соединенную со смесителем двигателя. Для загрузки, выгрузки и промывки колец использовали люки на боковой поверхности корпуса. Применялись конструкции, в которых в качестве фильтрующего материала использовалась вода или масло. Принцип работы водяных (барботажных) очистителей заключался в том, что газ в виде маленьких пузырьков проходил через слой воды и таким образом избавлялся от мелких частиц.
Высота барботажного слоя воды в очистителе установки ЦНИИАТ-УГ-1 повышалась от нуля до максимума (100 мм – 120 мм) по мере увеличения отбора газов. Благодаря этому обеспечивалась устойчивая работа двигателя на холостых оборотах и хорошая очистка газа на больших нагрузках. Предварительно охлажденный газ поступал расположенную по центру очистителя газораздаточную коробку. Боковые стенки коробки имели два ряда отверстий диаметром 3 мм. Отверстия были расположены наклонно от уровня воды до нижнего края стенок, погруженных в воду на 70 мм. Четыре отверстия, расположенные выше уровня воды, служили для обеспечения подачи газа на холостом ходу. С ростом числа оборотов эти отверстия перекрывались водой. В пространстве над газораздаточной коробкой при увеличении нагрузки создавалось разряжение, и уровень воды снаружи коробки повышался, а внутри, соответственно – понижался. При этом газ, поступая внутрь коробки, попадал в отверстия, расположенные над уровнем воды, и уже в виде пузырьков поднимался вверх, сквозь наружный водяной столб. Очистившись в воде, газ проходил через кольца, насыпанные на сетки по обе стороны газораздаточной решетки, и направлялся во вторую секцию очистителя, где вторично пропускался через погруженную в воду гребенку окончательно очищался в слое колец.
Методы уменьшения потерь мощности двигателей газогенераторных автомобилей
Бензиновые двигатели, переведенные на генераторный газ без каких-либо переделок, теряли 40-50% мощности. Причинами падения мощности являлись, во-первых, низкая теплотворность и медленная скорость горения газовоздушной смеси по сравнению с бензовоздушной, а во-вторых, ухудшение наполнения цилиндров как за счет повышенной температуры газа, так и за счет сопротивления в трубопроводах, охладителе и фильтре газогенераторной установки.
Для уменьшения влияния указанных причин в конструкцию двигателей были внесены изменения. В связи с тем что газовоздушная смесь обладает высокой детонационной стойкостью, была увеличена степень сжатия. Сечение впускного трубопровода было увеличено. Для устранения подогрева газовоздушной смеси и уменьшения потерь давления впускной трубопровод устанавливали отдельно от выпускного. Эти меры позволяли сократить потери мощности до 20-30%.
Смеситель
Образование горючей смеси из генераторного газа и воздуха происходило в смесителе. Простейший двухструйный смеситель а представлял собой тройник с пересекающимися потоками газа и воздуха. Количество засасываемой в двигатель смеси регулировалось дроссельной заслонкой 1, а качество смеси – воздушной заслонкой 2, которая изменяла количество поступающего в смеситель воздуха. Эжекционные смесители б и в различались по принципу подвода воздуха и газа. В первом случае газ в корпус смесителя 3 подводился через сопло 4, а воздух засасывался через кольцевой зазор вокруг сопла. Во втором случае в центр смесителя подавался воздух, а по периферии – газ.
Воздушная заслонка обычно была связана с рычагом, установленном на рулевой колонке автомобиля и регулировалась водителем вручную. Дроссельной заслонкой водитель управлял с помощью педали.
Подключение и запуск ДВС
Поскольку теплотворная способность генерируемого из дров топлива гораздо ниже, чем у бензина, то для нормальной работы мотора соотношение воздух/горючее нужно изменить. Для этого придется смастерить смеситель и поставить его на впускном тракте. Простейший вид смесителя – воздушная заслонка, управляемая тягой из салона.
Завести холодный мотор на дровах – та еще задачка. Поэтому не стоит полностью отказываться от бензина, а подавать его только во время запуска, а потом переходить на горючее, вырабатываемое газгеном. Чтобы реализовать переключение на разные виды топлива, изготовьте смеситель по схеме, предложенной в книге И. С. Мезина «Транспортные газогенераторы»:
Примечание. В этой же книге вы найдете массу полезной информации касательно получения газообразного топлива из различных видов древесины и угля.
Теперь про особенности пуска и работы ДВС на древесине и угле:
- размер дров, загружаемых в бункер, не должен превышать 6 см;
- сырую древесину применять нельзя, поскольку вся выделяемая теплота уйдет на испарение воды и процесс пиролиза будет крайне вялым;
- розжиг производится через специальное отверстие с обратным клапаном при включенном вентиляторе не позже чем за 20 минут до поездки;
- мощность мотора снижается примерно на 50% по сравнению с ездой на бензине;
- из предыдущего пункта вытекает, что ресурс работы двигателя на самодельном горючем тоже уменьшается.
Примечательно, что после кратковременных стоянок машина спокойно заводится от газгена, без перехода на бензин. После длительного простоя потребуется 5—10 минут на повторный розжиг установки.
Газогенераторы в транспортной технике
Практика доработки автомобилей под установку газовых генераторов началась еще в довоенные годы. На многие машины в рамках такой модернизации устанавливался генератор электрооборудования с высокой отдачей, так как нужно было обеспечивать достаточно мощный поток кислородного наддува. Для этого применялся электровентилятор. К наиболее заметным разработкам такого типа можно отнести «полуторки» ГАЗ-АА и «трехтонки» типа ЗИС-5, газогенераторные установки которых обеспечивали пробег на одной заправке до 80-90 км. Это немного, но в условиях дефицита жидкостного топлива на лесных хозяйствах данное решение полностью себя оправдывало экономически. Что касается сегодняшнего дня, то преобразование обычных авто с ДВС также мотивируется в основном интересами энергосбережения. Есть успешные примеры переделки легковых автомобилей ГАЗ-24 и АЗЛК-2141, которые на одной заправке проезжают до 120 км, поддерживая скоростной режим в диапазоне 80-90 км/ч.
Применение газогенераторных технологий в промышленности
Впервые газогенераторные технологии стали применяться в стекольной и металлургической промышленности в Европе, а в СССР нашли свое место в народном хозяйстве. К примеру, в середине 20 века по стране были распространены газогенераторные станции, вырабатывающие до 3 МВт из растительной биомассы и торфа. Современное оборудование заметно прибавило в технологическом развитии. Сегодня это целые комплексы, обеспеченные средствами автоматического и даже роботизированного управления под контролем ЭВМ. Мощность газогенераторных установок для выработки электроэнергии в промышленной сфере в среднем составляет 300-350 кВт. В некоторых случаях это целые химические заводы, предъявляющие жесткие требования к топливным материалам. Такие установки применяются на крупных производственных комплексах для обслуживания сразу нескольких систем потребления – силовых узлов (станков, линий сборки, динамомашин, компрессоров), осветительных приборов, вентиляционной инфраструктуры и т. д.
Эксплуатация автомобилей с газогенераторными установками
Эксплуатация автомобилей с газогенераторными установками имела свои особенности. В силу повышенной степени сжатия работа двигателя на бензине под нагрузкой допускалась лишь в крайних случаях и кратковременно: например, для маневрирования в гаражных условиях.
Инструкция категорически запрещала перевозить на газегенераторных автомобилях огнеопасные и легковоспламеняющиеся вещества, и тем более въезжать на территории, где не допускалось пользоваться открытым огнем – например, топливные склады. Разжигать газогенератор разрешалось только на открытой площадке.
Розжиг газогенератора осуществлялся факелом, тягу в при этом создавал электрический вентилятор. Газ, прокачиваемый вентилятором в процессе розжига, через патрубок выходил в атмосферу. Момент готовности газогенератора к работе определяли, поджигая газ у отверстия выходного патрубка – пламя должно было гореть устойчиво. По окончании розжига вентилятор выключали и пускали двигатель.
При неисправности вентилятора газогенератор можно было разжечь самотягой. Для этого зольниковый и загрузочный люки газогенератора открывали, а под колосниковую решетку подкладывали «растопку» — стружку, щепу, ветошь. Под действием естественной тяги пламя распространялось по всей камере. После розжига люки закрывали и пускали двигатель. Розжиг газогенератора при помощи работающего на бензине двигателя допускался инструкцией лишь в аварийных случаях, так как при этом возникала опасность засмоления двигателя. При движении автомобиля водитель вынужден был принимать во внимание инерцию газогенераторного процесса. Чтобы обеспечить запас мощности, необходимо было поддерживать отбор газа, близкий к максимальному. Для преодоления трудных участков рекомендовалось заранее переходить на понижающие передачи и поднимать обороты двигателя, а так же обогащать газо-воздушную смесь, прикрывая воздушную заслонку смесителя.
В отличие от бензиновых, газогенераторные автомобили требовали более частого пополнения топливом. Догрузку топлива в бункер производили в течение дня во время погрузочно-разгрузочных работ или стоянок.
Обслуживание газогенераторной установки было трудоемким. Чистка зольника газогенератора автомобиля УралЗИС-352 предусматривалась через каждые 250 – 300 км. Через 5000 – 6000 км газогенератор требовал полной чистки и разборки. Трубы охладителя рекомендовалось прочищать раз в 1000 км специальным скребком, входившим в комплект инструмента для обслуживания газогенераторной установки. Нижний слой колец фильтра тонкой очистки необходимо было промывать, выгрузив из фильтра на поддон, через 2500 – 3000 км пробега автомобиля. Верхний слой колец допускалось промывать каждые 10 000 км струей воды через люк в корпусе фильтра.
Оксид углерода СО опасен для человеческой жизни, по этому перед проведением работ по обслуживанию требовалось открыто все люки проветрить газогенераторную установку в течение 5 – 10 минут.
Бытовые газогенераторы
Домашнее котельное оборудование также улучшается, дополняясь новым функционалом и эксплуатационными возможностями. Для этой сферы предлагаются газогенераторные установки до 150 кВт на СУГ (сжижено углеродистый газ) в комплектации с системой жидкостного охлаждения, блоком зарядки аккумулятора и защитными приспособлениями. Это полноценный резервный генератор, который можно использовать в случае отключения основного энергоснабжения.
Расчет газогенераторного оборудования по мощности
Независимо от назначения энергетического агрегата, его технико-эксплуатационные показатели должны быть рассчитаны до покупки. Ниже приведен типовой пример расчета газогенераторной установки для домашней системы отопления.
Мощность агрегата усредненно следует соотносить с площадью целевого помещения эксплуатации, имея в виду следующую взаимосвязь: на 10 м2 приходится 1 кВт мощностного потенциала от генерируемой газовой смеси. Так, для площадки на 50 м2 потребуется установка не менее чем на 5 кВт, а если площадь производственного объекта составляет 1000 м2, то нужна будет система обогрева минимум на 100 кВт. Но и это не все. Для каждого проема в стене делается добавка примерно в 1 кВт, не считая поправки на климатические условия. В итоге объект общей площадью 1000 м2 с 10 окнами и 5 дверными проемами потребует использования установки с мощностью 1015 кВт как минимум.
Будущее развития газогенераторных технологий
В пользу продолжения развития газогенераторных агрегатов говорит их органичное сочетание с биотопливными элементами, которые являются безоговорочно одним из самых перспективных источников горючего сырья. В направлении оптимизации конструкций под пеллеты и брикеты с большей вероятностью будет осуществляться движение данной концепции. Что касается газогенераторных установок для автомобилей, то на промышленном уровне их разработка тоже может себя оправдать экономически. К слову, порядка 2 кг дешевых топливных материалов вырабатывают столько же энергии для машины, сколько 1 л бензина. Однако процессу развития в данном направлении все же препятствует необходимость усложнения конструкции автомобилей и появление все новых конкурентных генераторов, которые также приходят на смену обычным ДВС.
Работа автомобиля на газогенераторе
При эксплуатации такого газового двигателя не получится достичь скорости и ускорения, возможных при использовании бензинового аналога. Проблема заключается в составе древесного газа. Он на 50 % состоит из азота, на 20 % из окиси углерода; оставшиеся 18 % — водород, 8 % — двуокись углерода, 4 % — метан. Азот, который занимает половину удельной массы газа, вовсе не способен поддерживать горение, а соединения на основе углерода снижают эффективность горения. Большое количества азота уменьшает общую мощность такого генератора примерно на 30-50 процентов. Углерод снижает скорость горения газа, из-за чего не удается достичь высоких оборотов. Как следствие этого, понижаются динамические показатели автомобиля.
Генераторная установка для ЗИС-21
Как уже говорилось, основной принцип работы генератора — превращение твердого топлива в газ, поступающего в цилиндры. Газогенераторный ЗИС-21 в основном работал на таком топливе, как дуб и береза. Иногда использовался бурый вид угля, так как он был наименее гигроскопичным и давал больше всего газа на выходе.
Что касается конструкции типового генератора газа для ЗИС-21, то состоял он из следующих элементов: непосредственно самого газогенератора, охладителя-очистителя, тонкого очистителя, смесителя и электрического вентилятора.
Работа установки на ЗИС
В верхней части генератора располагался бункер, в который загружалось твердое топливо. Непосредственно под самим бункером располагался топливник. Здесь осуществлялось сжигание древесины. По мере того как сгорало старое топливо, осуществлялась «автоматическая подача» новой древесины. На деле же она просто падала из бункера в топливник под собственным весом, когда освобождалось место. Сама газогенерирующая установка располагалась с левого борта автомобиля.
В этом же топливнике происходило и образование окиси углерода из-за протягивания воздуха сквозь горящее топливо. Просасывание кислорода происходило либо за счет разрежения в цилиндрах, либо за счет работы электрического вентилятора. Эти методы являлись принудительными, но были установки и с естественной тягой воздуха. Однако в таком случае на подготовку к запуску могло уйти до часа времени.
Под топливником располагался зольник, как в любой обычной печи. Здесь скапливались продукты сгорания. Каждые 80-100 км было необходимо очищать его от золы. Однако здесь справедливо будет отметить, что этот факт доставлял проблемы лишь водителю транспортного средства.
Путь газа в установке и очистка
Весь полученный в процессе сгорания дров газ поступал в рубашку, которая окружала бункер. Таким образом достигался подогрев этого отсека. Это было необходимо, чтобы предварительно просушить всю древесину, подготовленную для сжигания. Далее стоит отметить, что после выхода из генератора газ имел температуру примерно 110-140 градусов. Поэтому он должен был проходить через секции радиатора. Там он не только понижал свою температуру, но и попутно очищался от тяжелых химических примесей.
Что касается очистки, то она происходила таким образом. Секции очистителя-теплообменника представляли собой внутренние перфорированные трубы. Эта конструкция была схожа с нынешними выхлопными системами. Горячий газ сильно расширялся, из-за чего терял скорость течения. Проходя через лабиринты труб, он еще сильнее замедлялся. Примеси отсеивались от него и оставались на внутренних стенках наружных труб обменников тепла. После этого следовал тонкий очиститель.
Мифы о газогенераторных установках
На просторах интернета часто встречается множество необоснованных утверждений о работе подобных агрегатов и дается противоречивая информация об использовании газогенераторов. Попытаемся все эти мифы развеять.
Миф первый звучит так: КПД газогенераторной установки достигает 95%, что несоизмеримо больше, нежели у твердотопливных котлов с эффективностью 60—70%. Поэтому отапливать дом с ее помощью куда выгоднее. Информация некорректна изначально, нельзя сравнивать бытовой газогенератор для дома и твердотопливный котел, эти агрегаты выполняют разные функции. Задача первого – вырабатывать горючий газ, второго – нагревать воду.
Когда говорят о генерирующем оборудовании, то его КПД – это отношение количества полученного продукта к объему газа, что возможно выделить из древесины теоретически, помноженное на 100%. Эффективность котла – это отношение вырабатываемой тепловой энергии дров к теоретической теплоте сгорания, также умноженное на 100%. Кроме того, извлечь из органики 95% горючего топлива может далеко не каждая биогазовая установка, не то что газогенератор.
Вывод. Суть мифа в том, что массу либо объем пытаются через КПД сопоставить с единицами энергии, а это недопустимо.
Обогревать дом проще и эффективнее обычным пиролизным котлом, что таким же способом выделяет горючие газы из древесины и тут же их сжигает, используя подачу вторичного воздуха в дополнительную камеру сгорания.
Миф второй – в бункер можно закладывать топливо любой влажности. Загружать-то его можно, да только количество выделяемого газа падает на 10—25%, а то и более. В этом отношении идеальный вариант — газогенератор, работающий на древесном угле, что почти не содержит влаги. А так тепловая энергия пиролиза уходит на испарение воды, температура в топке падает, процесс замедляется.
Миф третий – затраты на обогрев здания снижаются. Это нетрудно проверить, достаточно сравнить стоимость газогенератора на дровах и обычного твердотопливного котла, тоже сделанного своими руками. Плюс нужно водогрейное устройство, сжигающее древесные газы, например, конвектор. Наконец, эксплуатация всей этой системы отнимет немало времени и сил.
Вывод. Самодельный газогенератор на дровах, сделанный своими руками, лучше всего использовать совместно с двигателем внутреннего сгорания. Именно поэтому домашние умельцы приспосабливают его для генерации электроэнергии в домашних условиях, а то и прилаживают установку на автомобиль.
Почему это выгодно
Построив древесный газогенератор своими руками, вы сможете рассчитывать на следующие выгоды:
Газогенераторные автомобили
- Уменьшенный расход топлива. Ведь КПД котла с газогенератором равно 90-95 процентам, а у твердотопливного котла – всего 50-60 процентов. То есть, на обогрев одного и того же помещения газогенератор потратит не более 60 процентов топлива, расходуемого обычным твердотопливным котлом.
- Продолжительный процесс горения. Пиролиз дров происходит за 20-25 часов, а процесс термического разложения древесного угля заканчивается за 5-8 суток. Следовательно, загрузку дров в котел можно проводить всего раз в сутки. А если вы пользуетесь древесным углем, то «зарядка» котла осуществляется раз в неделю!
- Возможность использовать в качестве топлива любой источник целлюлозы – от жмыха и соломы, до живой древесины с влажностью около 50 процентов. То есть о «сухости» дров можно уже не заботиться. Причем в топку некоторых моделей газогенераторных котлов можно отгружать даже метровые поленья, без предварительного измельчения (колки).
- Отсутствие потребности в чистке и дымохода, и поддувала. Пиролиз утилизирует топливо практически без остатка, а продукт окисления олефинов – это обычный водяной пар.
Кроме того, необходимо отметить и возможность полностью автоматизировать процесс работы котла.
К отрицательной стороне практики использования газогенераторов на дровах относятся следующие факты:
- Такой котел стоит очень дорого. Цена самого дешевого варианта «пиролизного» котла в два раза выше стоимости твердотопливного аналога. Поэтому самые рачительные хозяева предпочитают строить газогенератор на дровах своими руками.
- Такой котел работает на электричестве, расходуемом на энергообеспечение систем надува воздуха в камеры сгорания. То есть, если нет электричества – нет и тепла. А обычная печь будет «работать» где угодно.
- Котел генерирует стабильно высокую мощность. Причем снижение интенсивности нагрева спровоцирует сбой в работе всей системы – вместо горючих олефинов во вторичную камеру пойдет обычный деготь.
Но все недостатки «окупаются» обилием положительных характеристик и экономичной работой нагревательного прибора. Поэтому приобретение газогенератора, а тем более самостоятельное строительство такого «отопительного прибора» – это очень выгодное дело. И ниже по тексту мы опишем процесс создания дровяного газогенератора.
Применение
Как сделать газогенератор для дома или автомобиля: устройство и принцип работы
- Раньше газгены применялись в автомобилестроении, во время Великой Отечественной войны такие генераторы устанавливались на многие легковые автомобили-полуторки и грузовики марки ЗИС. Двигатели внутреннего сгорания, работающие на природном газе, были незаменимы и удобны из-за несложного устройства и дешевизны.
- Сегодня газогенераторные установки применяются для отопления домов и жилищ.
- Для выработки электроэнергии с помощью различных турбинных установок или электрогазогенераторов.
- До сих пор некоторые люди устанавливают на свои жигули подобные агрегаты. Машина при этом совершенно исправна и не требуют больших затрат. Также из-за низкого загрязнения воздуха по сравнению с нефтяным топливом, многие люди все больше переходят на автомобильные газогенераторы для ДВС.
- В промышленности применяются газогенераторы, работающие на каменном угле, который может давать большее количество энергии.
Плюсы технологии
Газогенераторы отлично справляются с базовыми задачами выработки энергии. Так, если обычные твердотопливные агрегаты имеют КПД на уровне 60%, то газовые аналоги – более 80%. Отмечаются и положительные нюансы обслуживания. Поскольку в камере происходит полное сгорание с выводом углекислотной смеси, в дальнейшем не требуется специальная очистка стен оборудования. Безусловно, есть и преимущества экономического характера. Простейшая газогенераторная установка на дровах позволяет сэкономить до 30-40% по сравнению с электрическими обогревателями и котлами, обеспечивающими аналогичный тепловой эффект.
Минусы технологии
Достоинства газогенераторов могли бы их сделать основным средством выработки электрической и тепловой энергии, если бы не слабые места. К ним в первую очередь относится многокомпонентность функциональных частей. Несмотря на простой принцип работы, газогенераторная установка содержит множество взаимозависимых элементов, что усложняет сборку и управление системой. Также стоит подчеркнуть необходимость постоянного поддержания горения путем загрузки топливного сырья. В условиях работающего производства это необходимо делать регулярно, поэтому без контролирующей автоматики обойтись не удастся.
Что же представляет собой данный агрегат
То, что оборудование этого класса привлекает все большее количество потребителей объясняется в первую очередь наиболее низкой ценой на топливо, если сравнивать с бензином и дизелем. Кроме того, работающие на газе генераторы являются одними из наиболее экологически чистых, что вполне соответствует требованиям современного покупателя.
Есть отличия у этого агрегата и в конструктивном плане.
Он состоит из следующих блоков:
- Двигателя;
- Альтернатора;
- Технологической обвязки.
Наличие последнего узла, включающего в себя устройства управления и обслуживания, позволило добиться стабильной работы оборудования в соответствии с запросами потребителя. Многие модели имеют стабилизаторы выходного тока и микропроцессорные узлы, что гарантирует не только высокое качество вырабатываемой электроэнергии, но и возможность мониторинга работы двигателя. На сегодняшний день некоторые из газовых генераторов способны одновременно производить энергию и тепло. Именно они более всего интересуют современного потребителя.
Прочие параметры
При выборе газогенераторов немаловажную роль играют такие параметры, как тип охлаждения, уровень шума и способ запуска агрегата.
Установки бывают двух типов:
- С воздушным охлаждением;
- С водяным охлаждением.
Первая разновидность обладает компактными габаритами и низкой ценой. Однако такие генераторы не способны осуществлять подогрев мотора. В связи с этим данное оборудование нельзя эксплуатировать при низких температурах окружающей среды. Вторая категория агрегатов прекрасно подойдёт для использования в зимних условиях на протяжении длительного времени. Данные устройства полностью автоматизированы, имеют сложную конструкцию, а также обладают большой мощностью и высоким уровнем надёжности.
При выборе газового генератора необходимо помнить, что уровень шума, издаваемого установкой во время работы, находится на довольно низком уровне, и в среднем составляет 65-70 Дб. Если конструкцией аппарата предусмотрено наличие шумозащитного кожуха, то интенсивность распространения звуковых волн будет сведена к минимуму. Однако стоит помнить, что такое устройство способствует перегреванию силовой установки. Поэтому для охлаждения агрегата необходимо регулярно устраивать перерывы в его работе.
Запуск электрогенератора может осуществляться тремя способами:
- При помощи шнура;
- С использованием стартера;
- Посредством автоматической системы.
Первый метод основан на резком вытягивании шнура и требует некоторых физических усилий. Второй способ базируется на простом нажатии кнопки либо повороте ключа. Наиболее прогрессивным является третий вариант. Для включения устройства не требуется вмешательство пользователя. начинает осуществлять свою деятельность именно в тот момент, когда происходит обесточивание внутренней сети.
Заключение
Невзирая на всю привлекательность идеи сжигания дров вместо бензина в современных условиях она практически нежизнеспособна. Долгий розжиг, езда на средних и высоких оборотах, влияющая на ресурс ДВС, отсутствие комфорта, — все это делает действующие установки обычными диковинками, не находящими широкого применения. А вот сделать газогенератор для домашней электростанции – совсем другой вопрос. Стационарный агрегат совместно с переделанным дизельным ДВС может оказаться отличным вариантом электроснабжения дома.
Источники
- https://AutoTopik.ru/vse-pro-avtomobili/908-na-drovah-ili-gazogeneratornye.html
- https://FB.ru/article/455064/gazogeneratornyie-dvigateli-printsip-rabotyi-tehnicheskie-harakteristiki-toplivo
- https://zen.yandex.ru/media/id/5a9ec3b3dcaf8ead78534917/avtomobili-sssr-gazogeneratornyi-gaz42-5e46ca246e1cd54e7a5c8afb
- https://otivent.com/kak-sdelat-gazogenerator-dlya-avtomobilya-svoimi-rukami
- http://www.uazbuka.ru/engine/fuel/GazGen/index.html
- https://principraboty.ru/princip-raboty-gazogeneratora/
- http://wiki.zr.ru/%D0%93%D0%B0%D0%B7%D0%BE%D0%B3%D0%B5%D0%BD%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80
- https://cotlix.com/kak-sdelat-gazogenerator-dlya-doma-ili-avtomobilya
[свернуть]
Как сделать газогенератор своими руками и что для этого нужно?
Несмотря на сложность устройства, народным умельцам удается сооружать газогенератор своими руками, создавать модели с оптимальными параметрами для экономичного обогрева жилья. При необходимости можно легко освоить чертежи газогенераторов для самостоятельного изготовления и изучить конструктивные особенности агрегата.
Особенности исполнения, составные части, функционал
Агрегат представляет собой механизированное устройство, работа которого предусматривает продуцирование газа из всевозможных видов твердого топлива – дров, угля, смесей. Полученный ресурс применяется в различных целях: направляется на отопление жилья, используется как топливо для автомобиля, находит применение в обеспечении работы электростанций. Устройство газогенератора на дровах базируется на узлах, описанных далее.
Корпус
Изготавливается из листов стали, которые соединяются сварочным способом. Чаще всего встречаются модели цилиндрической формы. Притом среди самодельных агрегатов немало и генераторов газа прямоугольной конфигурации. Корпус оснащается ножками, которые приварены к днищу.
Бункер
Емкость установлена внутри корпуса и представляет собой камеру для загрузки топлива. Отсек по форме повторяет геометрию корпуса, в его изготовлении применяют малоуглеродистую сталь.
Камера сгорания
Отсек можно увидеть в нижней части корпуса, он необходим для поддержки процесса горения. Узел изготавливают из жаропрочной стали, в некоторых моделях рабочую поверхность выполняют с применением керамики. Для крекинга смол в дальнем сегменте отсека оборудуется горловина из жаропрочной хромистой стали.
Как выглядет газогенератор своими рукамиВ средней части камеры сгорания расположены фурмы, по которым подается воздух. Конструкция предусматривает калиброванные отверстия, которые соединены с воздухораспределительной коробкой. Обратный клапан на выходе из воздухораспределительной коробки препятствует утечке горючей массы из газогенератора.
Колосниковая решетка
Колосник из чугуна расположен в нижней части корпуса газогенерирующей установки на дровах и служит для поддержки раскаленных углей. Средняя часть конструкции подвижная, что необходимо для чистки решетки от шлаков. Для поворота колосника применяют специальный рычаг.
Загрузочные люки
Конструкция предусматривает герметично закрывающиеся крышки с продуманным функционалом. Особенности верхнего загрузочного люка:
- откидывается горизонтально;
- оснащается уплотняющим асбестовым шнуром;
- крепление дополнено специальным амортизатором.
В случае избыточного давления внутри камеры крышка люка приподнимается при помощи рессоры.
Боковая поверхность корпуса также оборудована верхним и нижним загрузочными люками:
- верхний люк применяется для добавления твердого топлива в зону восстановления;
- нижний люк предназначен для удаления золы.
Газ отводится через патрубок, который соединен с трубой газопровода. Перед тем, как выводить его за пределы генератора, используют потенциал горячего газа для подсушивания топлива в камере загрузки. Так, отводящий газопровод прокладывается по кольцевой линии вокруг камеры, что охватывает периметр между корпусом и бункером. Отбор газа выполняется в зоне восстановления, чаще всего в верхней половине агрегата газификации, но также возможно отведение ресурса и из нижней части корпуса.
Фильтры
На выходе из генерирующей установки газ поступает в фильтрующие устройства, которые располагаются за корпусом газгена. Фильтры представляют собой трубчатые конструкции с соответствующим очищающим наполнителем. Перед поступлением в фильтр тонкой очистки необходимо охладить газ, для чего применяется специальный охладительный отсек. Далее очищенный газ направляется в смесительную установку для смешивания с воздухом.
Виды оборудования
По особенностям устройства различают следующие виды газогенераторов:
- вертикальный газген – установка прямого процесса газификации. Конструкция предусматривает поступление воздуха снизу через колосник, отведение газа выполняется сверху. Влага, необходимая для обогащения газа, подводится специальным каналом, так как в вертикальных газогенераторах влага из топлива не попадает в зону горения. В газгенах прямого процесса газификации применяется небитумиозное топливо – антрацит, уголь полукокс;
- обратный – здесь газификация происходит в «перевернутом» порядке. Изделие собирается таким образом, чтобы попадающий внутрь воздух направлялся сразу же в среднюю часть корпуса, то есть туда, где инициируется горение. Образующиеся газообразные продукты выводятся ниже активной зоны, непосредственно в зольнике. Для таких агрегатов актуально смолистое топливо, в частности дрова и аналогичный уголь, отходы дереообработки;
- горизонтальный – газификация протекает в поперечном направлении. Воздух поступает с высокой скоростью, а отвод предусмотрен сбоку в нижней части корпуса. Напротив фурмы установлена газоотборная решетка.
Горизонтальные газгены способны легко адаптироваться к смене режимов работы, также среди достоинств агрегата отмечают то, что для пуска установки потребуется минимальный временной промежуток.
Преимущества и недостатки
Наряду с такими достоинствами газогенераторов, как независимость и продуктивность, отмечают ряд других, не менее значимых, преимуществ газогенерирующих установок:
- автономность – газовый генератор на твердом топливе спасает положение в тех случаях, когда отсутствует линия электроснабжения, затруднен подвоз газа в баллонах, нет возможности прокладки магистрального газопровода. Полученный горючий газ применяется для обеспечения работы электростанций и насосных установок, направляется на бытовые нужды, отопление жилых зданий, промышленных объектов;
- высокий уровень производительности – КПД газогенераторных установок на твердом топливе составляет 80-95%. К примеру, КПД обычных ТТ котлов не превышает отметку 60%;
- высокое октановое число – показатель варьируется в пределах значений 110-140;
- регулируемость процесса горения – в зависимости от модели устройства газификации одной закладки дров хватит для эффективной работы установки в течение 8-12 часов. В газгенах на дровах с верхним типом горения этот параметр варьируется до 25 часов. В случае с агрегатом газификации на угольном топливе одной закладки достаточно для обеспечения бесперебойной работы до 5-8 дней;
- возможность автоматизации работы установки – автоматизированный газогенератор способен работать без участия человека, процесс можно контролировать удаленно;
- экологичность – топливо сгорает полностью, коэффициент выброса вредных веществ в воздух определяется в минимальных значениях;
- высокий уровень безопасности прибора – это обеспечивается работой автоматики, также безопасность устройства обуславливается качеством материалов;
- несложность обслуживания и ухода – отсутствует необходимость в частых закладках топлива, чистка зольника и газохода проводится реже из-за особенностей работы генератора газа;
- нетребовательность к качеству топливных ресурсов – в зависимости от модели допускается использование дров 50% влажности, отдельные модели газгенов способны работать на свежесрубленной древесине. В агрегат можно загрузить дрова длиной 1 м и больше.
Помимо использования различных видов древесины и отходов деревообработки, в генераторах газа допускается утилизация пластмассы, резиновых изделий и других полимеров.
Недостатки генераторов газификации:
- дороговизна – цены на газген почти в 2 раза превышают стоимость твердотопливных механизмов;
- энергозависимость – не все модели газовых генераторов работают автономно. Так, для подсоса воздуха требуется установка электрического вентилятора;
- требовательность к рабочему процессу – при продолжительном использовании устройства на мощности ниже 50% работа сопровождается эффектом нестабильного горения, одним из последствий которого может стать накапливание в дымоходе дегтевого осадка.
Кроме этого, если температура обратки в системе опускается ниже отметки 60°C, в газоходе выпадает конденсат.
Варианты изготовления своими руками
Решая, как сделать био газогенератор своими руками, первым делом выбирают конструкцию. Для этого стоит использовать схемы заводских или самодельных агрегатов. Имея готовые чертежи, несложно изготовить газген для отопления или же газогенератор для копчения своими руками.
Инструменты и материалы
Для самостоятельного изготовления газогенератора необходимо подготовить следующие инструменты:
- сварочный аппарат;
- болгарку;
- дрель;
- набор ручных инструментов;
- крепежные детали.
Изготовление вертикального газогенератора
В устройстве вертикального процесса горения вырабатываемый газ поднимается вертикально вверх и направляется по трубе для фильтрации и охлаждения. Порядок действий:
- В качестве корпуса можно использовать готовую металлическую бочку или же из листовой стали толщиной 8-10 мм и уголка создать конструкцию требуемой конфигурации.
- Бункер делают из аналогичного материала и фиксируют внутри корпуса.
- Камеру сгорания изготавливают на основе пустого газового баллона.
- Горловину камеры сгорания оснащают жаропрочными прокладками из силикона или силикатов.
- Далее оборудуется воздухораспределительная коробка, рядом монтируют обратный клапан. Между воздухораспределительным узлом и камерой выполняют фурмы.
- Для создания узла фильтрации газа используют корпус старого огнетушителя.
- Для охлаждения газа после грубой очистки устанавливают обычный радиатор, при желании делают специальный змеевик.
- Чтобы отводить конденсат, применяют сеператор. Для этого в трубу d3-5 мм вставляют ребристую пластину и фиксируют к точке подачи холодного воздуха, нижняя часть оснащается краном слива конденсата.
- Колосниковую решетку изготавливают из жаропрочной арматуры, но лучше использовать готовый чугунный колосник подходящего размера.
- Устанавливают дверцы из жаропрочных основ с герметичными уплотнителями.
Необходимо помнить, что герметичность – одно из важных условий корректной работы устройства.
Изготовление горизонтального газогенератора
В теплосиловых установках горизонтального процесса горения газ перемещается в нижней половине корпуса горизонтальными потоками. Устройство несколько проще, чем в аналогичном оборудовании вертикального вида.
Составные элементы горизонтального газогенератора:
- корпус с бункером, воздуховодом и газораспределительным узлом;
- камера сгорания, которая оборудуется герметичной горловиной;
- фильтры, охлаждающий отсек, смеситель.
При конструировании агрегата следует использовать схемы и чертежи промышленных или самодельных газгенов.
Нюансы эксплуатации газогенератора
Ошибочно считают, что самодельный газогенерирующий агрегат способен работать на древесине с влажностью до 50%. При этом стоит учесть, что чем выше уровень влажности топлива, тем ниже эффективность теплосилового устройства. Для оптимизации рабочего процесса стоит использовать горячий газ для подогрева и сушки дров в бункере. В этих целях между корпусом и загрузочной камерой прокладывается газопровод: часть тепловой энергии расходуется на просушку топливных ресурсов.
расход, пробег, запуск, фильтрация, октановое число газа, влияние на двигатель / СоХабр
1. Сколько кг дров нужно для пробега 100км
Автомобиль жигули — «четверка» объем двигателя 1.5л, 76 лошадиных сил, коэффициент наполнения цилиндров 0.75.
Потребляет на 100 км около 10 литров бензина (старые автомобили) и 20 кг дров в час если ехать со скоростью 100км в час непрерывно. Если ехать с меньшей скоростью и меньшими чем 3000 оборотов — расход меньше.
Автомобиль Волга Газ 24 — «членовоз» объем двигателя 2.4 л, 105 лошадиных сил, коэффициент наполнения цилиндров 0.83.
Потребляет на 100 км около 13-15 литров бензина (старые автомобили) и 36 кг дров в час если ехать со скоростью 100км в час непрерывно и оборотами 3000 двигателя.
Автомобиль ЗИЛ с объемом двигателя 6,0л, 150 лошадиных сил, коэффициент наполнения цилиндров 0,95.
Потребляет на 100 км 36 литров бензина и 103 кг дров в час при оборотах двигателя 3000
Автомобиль ОКА с объемом двигателя 0.75л, 35 лошадиных сил
Потребляет 4.3 литра на 100км и 10 кг дров в час при оборотах двигателя 3000
коэффициент наполнения цилиндров не нашел, посчитал на 0.75
Теперь когда мы знаем расход дров, мы можем смело посчитать размер бункера для загрузки дров.
1 кг дров порубленных на куски 5х5см имеет коэффициент наполняемости 0.5 и занимает объем бункера 5 литров
более мелко порубленное топливо — например щепа имеет коэффициент наполнения 0.35 и занимает объем бункера весом 1 кг на 30% меньший — 3,5 литра. Цифры справедливы для сосны, если применять лучшее топливо: бук, граб, дуб, береза — наполнение бункера еще лучше и в такой же объем войдет больше кг, что значит более долгий пробег, если добавлять еще и пластиковый мусор — пробег еще больше, а расход дров меньше.
Например на 1 мешек дров (сосна — вес мешка 13 кг) загруженных дров в ГАЗ 24 можно смело забрасывать 120 пластиковых бутылок объемом 2 литра (6 кг при весе одной бутылки 50 грамм). Что позволит нам на 46% снизить расход дров заменяя пластиковым мусором дровяной.
13 — 100%
6 — х
6х100/13 = 46.15%
Какого размера бункер делать?
Умножая 1 кг на 5 литров получаем нужный нам объем бункера. Сколько вы хотите ехать до следующей загрузки топлива: час, два, три?
Некоторые делают объем бункера на 500км пробега, как Веса и его ученик.
Сколько времени нужно на запуск?
Газогенератор на древесном угле — 10-30 секунд
Газогенератор на дровах (и мусоре) — 5-15 минут. Делается это прямо в пути на ходу путем переключения кнопкой топлив. Стоять качегарить и дуть не надо.
Так на сколько же бензин сильнее древесного газа?
Любое топливо ценно двумя элементами: углеродом С и водородом Н2 сжигая которое в единицу времени и объема мы получаем теплотворность которая и движет наш автомобиль.
Теплотворность бензина 10572 ккал/кг
Теплотворность древесного газа 1000 ккал/кг — (цифра колеблется до 1250 ккал/кг)
Казалось бы в 10 раз! Как оно на дровах еще едет? Но нет, забыли о том что топливо должно превратится в газовоздушную и бензовоздушную смесь. Для горения в цилиндрах нужен еще и кислород. Смесь должна поступать смешанная.
Теплотворность бензовоздушной смеси 860 ккал/кг
Теплотворность газовоздушной смеси (древесный газ) 560 ккал/кг — или 64% от бензоводушной.
Цифра 64% на 36% слабее бензовоздушной. Но путем доработок и подключения современных устройств эта цифра снижается вплоть до 0.
При чем стоит это не дорого и делается не сложно. Даже во времена СССР эту цифру доводили до 4% потерь от мощности бензинового двигателя.
Какое октановое число у древесного газа и как эксплуатация его сказывается на моторесурсе двигателя?
У газогенераторного газа октановое число 110-120 что позитивно сказывается на моторесурсе двигателя снижая детонацию, газ не смывает масляную пленку, двигатель работает тише, ровнее. Вот тут подробно описал тем кто хочет углубиться.
Конечно же если не правильно делать газген, а в 1м3 газа содержится 3г пыли и не умело её фильтровать (не правильно делать фильтра) то все это пойдет в двигатель и будет действовать как наждак на поршни, но если все делать правильно то ни пыли ни смол не попадет в двигатель и его моторесурс будет больше чем указанный в паспорте рассчитанном для бензина.
Как часто выгружать золу?
С 1кг дров пропущенном через газогенератор выделяется 1г золы. Сколько кг вы будете жечь в час и посчитайте сколько грамм золы накопиться за час день, месяц эксплуатации при вашем ежедневном пробеге.
Как часто надо менять фильтра?
Раньше забивали в фильтра древесную шерсть, опилки и прочее. Сегодня фильтра делаются безсменные — менять ничего не надо.
Как выгодно ездить на дровах?
Сколько стоит 1 литр бензина?
1 литр бензина = 2-3 кг дров (зависит от влажности, плотности и пр.).
Может ли этот малоизвестный генератор биомассы начать энергетическую революцию?
Возможно, это самая важная переносная электростанция, о которой вы никогда не слышали. Он называется «Power Pallet» и по сути представляет собой комбинированный завод по переработке биомассы и генератор, который помещается на одном поддоне и может выдавать до 20 киловатт электроэнергии.
Я наткнулся на блестящую, но скромную штуковину, которая выглядит ... ну, как миниатюрный нефтеперерабатывающий завод, прикрепленный к миниатюрной электростанции, когда бродил по задней части ярмарки Bay Area Maker Faire, где многие из причудливых или смутно напоминающих стимпанк Burning Man Были также представлены произведения промышленного искусства.
Это была подходящая обстановка, учитывая, что создатель Power Pallet Джим Мейсон - художник из Беркли, Калифорния, который начал разработку портативного гибкого источника питания после того, как город отключил электричество в коллективном рабочем пространстве, которое он создал для художников, работающих в больших масштабах. проекты для Burning Man. Одной из первых идей, к которой он обратился в поисках альтернативного источника энергии, была газификация.
«Газификация увлекательна тем, что это процесс разделения огня на составляющие его компоненты и возможность контролировать их», - сказал Мейсон недавно Fast Company.«Это следует рассматривать как операционную систему огня».
Спустя более десяти лет компания Мейсона All Power Labs теперь насчитывает 35 штатных сотрудников и только что развернула пятую версию Power Pallet после установки сотен устройств в развивающихся странах и в качестве исследовательского инструмента в университетах. среди других мест.
В условиях нехватки дизельного топлива в Либерии были установлены Power Pallets
По сути, Power Pallet работает за счет сжигания доступной биомассы, но до того, как топливо полностью сгорит, образующиеся легковоспламеняющиеся газы, такие как водород и окись углерода, уносятся, чтобы использовать вместо этого в качестве топлива в двигателе General Motors, который работает как электрический генератор.Скорлупа грецких орехов - один из лучших источников топлива из биомассы, требующий минимального количества операций и технического обслуживания с помощью Power Pallet. На втором месте - древесная стружка и скорлупа кокосовых орехов, а наиболее трудными в использовании являются кукурузные початки или скорлупа пальмовых ядер.
По оценке компании, 10 кг (20 фунтов) биомассы, преобразованной в электричество с помощью Power Pallet, примерно эквивалентны мощности сжигания 4 л (1 галлон США) дизельного топлива в генераторе, но сырье для биомассы может стоить очень мало как одна треть стоимости дизельного топлива за выработанный киловатт-час.
Конечная цель Power Pallet - создать законченное, портативное и компактное решение для выработки электроэнергии, которым может легко управлять любой человек из коробки (или, возможно, без поддона) без какой-либо подготовки. Последняя версия включает в себя обновления, такие как автоматическая обработка золы, по сути, добавление камеры для удаления золы, которую легко опорожнять один раз в день, чтобы убедиться, что вещи не засоряются.
Согласно последним ценам на веб-сайте компании, Power Pallet 20 стоит около 30 000 долларов США или чуть менее 40 000 долларов США за блок с сетевым соединением, позволяющим компенсировать любой дефицит электроэнергии за счет электросети.
Вы можете посмотреть обзор последней модели на видео ниже.
Источник: All Power Labs
v5.0 Power Pallet Walk-Around с Остином Лю - ЧАСТЬ 1
Заменить дорогие дизель-генераторы или старые электрогенераторы
У вас есть старые электрогенераторы и вы хотите заменить или расширить их проверенной и надежной технологией последнего поколения?
Тогда вы попали в нужное место! Мы являемся экспертами в области газификации древесины с помощью газификаторов древесины, установленных во всем мире.У нас есть обширные ноу-хау в ремонте старых генераторов энергии или дизельных генераторов.
Электроэнергия и тепло из биомассы
Наши электростанции, работающие на биомассе, зарекомендовали себя во всем мире и вырабатывают электричество и тепло практически из любой натуральной древесины. Они чрезвычайно гибки в своем применении: вы можете комбинировать наши газификаторы древесины с существующей теплоэлектроцентралью (ТЭЦ), а также интегрировать газификатор древесины и ТЭЦ на древесине в существующий проект.
Переоборудование с газификацией древесины для повышения эффективности и экономии
Воспользуйтесь преимуществами надежности оборудования нашей технологии газификации и повысьте энергоэффективность для увеличения выработки электроэнергии и тепла с помощью переоборудования. Нашим теплоэлектростанциям в качестве источника энергии требуется только древесина. Это экологически чистое топливо, которое не только не наносит вреда окружающей среде и климату, но и укрепляет региональную экономику.
Посмотрите наш видеоролик
о проектах модернизации существующих электрогенераторов с газификацией древесиныЗамена дорогих дизельных генераторов на металлических рудниках на электростанции, работающие на биомассе Re²
- Исходная ситуация: металлические рудники без подключения к электросети
Ограничения: Базовая нагрузка на электричество составляет около 4.5 МВт, пиковая нагрузка ок. 7 МВт; предыдущее электроснабжение от ветряных, гидроэнергетических и дизельных агрегатов - Проблема: Более 50% общего спроса на электроэнергию вырабатывается дизельными генераторами; импорт дизельного топлива очень дорог и неэффективен; энергия ветра и гидроэнергетика зависят от погодных условий.
- Планы проекта - Шаг 1 : Использование газификаторов древесины Re² (HKA 70) вместо дизельного генератора мощностью 1,2 МВт
Шаг 2 : Дальнейшая замена 1.Дизельный агрегат CAT мощностью 2 МВт с газификатором древесины из Re²
См. Другие ссылки на газификацию древесины.
Автономная сеть и замена дизель-генератора
400 сотрудников работают в три смены для эксплуатации шахты, которая не подключена к коммунальной электросети. Для добычи цинка и золота постоянно требуется около 4,5 МВт электроэнергии, а в пиковые периоды потребляется до 7 МВт. На сегодняшний день большая часть электроэнергии вырабатывается пятью дизельными генераторами CAT. Генераторы неэффективны в эксплуатации, потому что импорт дизельного топлива очень дорог, сложен и не очень экологически безопасен.
С 2010 года ветряные электростанции покрывают до 5% потребностей шахт в энергии, хотя они сильно зависят от преобладающих погодных условий. Кроме того, есть три гидроэлектростанции, которые вырабатывают экологически чистую энергию.
Спрос на энергию значительно колеблется. Электроэнергия и тепло должны производиться независимо от погоды и экологически безопасным способом. Поэтому оператор шахты намерен полагаться на проверенную технологию газификации древесины Re² - ведущего производителя электростанций, работающих на биомассе.
Несколько дровяных газификационных установок заменяют дизельные генераторы электрической мощностью 1,2 МВт в двух фазах проекта. Несколько систем соединены в каскад и работают одновременно и независимо друг от друга. Они производят энергию по мере необходимости и чрезвычайно гибки. Древесина из этой местности служит источником энергии, принося пользу региону.
Каскад газификаторов древесины предлагает преимущества в гибкости и с точки зрения обслуживания.
По сравнению с одной крупномасштабной установкой, несколько установок Re² предлагают преимущества в гибкости, а также с точки зрения обслуживания.Это может быть выполнено на месте, а также на серийно выпускаемых турбодвигателях с охладителем наддува, которые устанавливаются на мощных теплоэлектроцентралях Re² (не требуется дорогостоящий специалист). Доступность системы также обеспечивается во время работ по техническому обслуживанию и составляет более 90% на всем протяжении, обеспечивая надежное энергоснабжение.
Электростанции на биомассе от Re² чрезвычайно гибки в отношении топлива и могут работать с любой натуральной древесиной. С помощью запатентованной технологии энергия также может производиться экологически и экономично в отдаленных регионах, когда это необходимо.На данный момент большая часть электроэнергии на руднике вырабатывается дизельными генераторами CAT. Электростанции на биомассе от Re², вырабатывающие электричество и тепло из древесной щепы, являются отличным способом замены дизельных генераторов и выработки энергии на основе древесного газа по мере необходимости.
Объедините газификатор древесины Re² с большой теплоэлектроцентралью!
Более крупные блоки ТЭЦ с электрической мощностью от 500 кВт до 3 МВт могут также работать на древесном газе, как для запланированных проектов, так и в рамках модернизации.
Китай производитель дизельных генераторов, газогенераторы, поставщик дизельных двигателей
Shandong Ecome Power Equipment Co., Ltd. - это торговая компания Weifang Yidaneng Power Co., Ltd. Основанная в 2009 году компания Weifang Yidaneng Power Co., Ltd. расположена в городе Вэйфан, провинция Шаньдун, который известен как «китайский город власти». В основном она занимается исследованиями, разработками и производством дизельных двигателей, газовых двигателей, дизель-генераторных и газогенераторных установок.Завод покрывает ...
Shandong Ecome Power Equipment Co., Ltd. - это торговая компания Weifang Yidaneng Power Co., Ltd. Основанная в 2009 году компания Weifang Yidaneng Power Co., Ltd. расположена в городе Вэйфан, провинция Шаньдун, который известен как «китайский город власти». В основном она занимается исследованиями, разработками и производством дизельных двигателей, газовых двигателей, дизель-генераторных и газогенераторных установок. Завод занимает площадь 36 000 квадратных метров, включая производственный отдел, технический отдел и отдел международной торговли.Более 50 сотрудников.Компания прошла сертификацию системы менеджмента качества ISO9001, сертификацию системы экологического менеджмента ISO14001, сертификацию системы охраны труда и техники безопасности OHSAS18001, сертификацию SASO в Саудовской Аравии, сертификацию ЕС CE.
Дизель-генераторные установки мощностью от 6,5 до 4000 кВт. Блоки выбираются из дизельных двигателей известных брендов, таких как Perkins, Cummins, MTU, Ricardo, Yangdong и других известных брендов, таких как Stamford, Marathon и Farrand.
Газовые генераторные установки мощностью от 10 до 1500 кВт делятся на генераторные установки природного газа, биогазовые генераторные установки, генераторные установки сжиженного нефтяного газа и генераторные установки на биомассе.
Компания имеет права на самостоятельный импорт и экспорт, а продукция экспортируется в зарубежные страны, особенно в страны Юго-Восточной Азии, Ближнего Востока и Центральной Азии, расположенные вдоль пояса и пути. В настоящее время компания установила долгосрочные и стабильные отношения сотрудничества с более чем 20 странами, включая Азию, Африку и Америку.
Дровяной генератор - RimWorld Wiki
Дровяной генератор
Вырабатывает энергию, потребляя дерево. Необходимо периодически вручную загружать древесное топливо.
Базовая статистика
-
- Тип
- Здания - Мощность
- HP
- 300
- Рыночная стоимость
- 265 [Примечание]
- Beauty
- -20
- Воспламеняемость
- 100%
- Размещаемый
- Да
- Размер
- 2 ˣ 2
- Мощность
- + 1000 Вт
Создание
-
- Необходимые исследования
- Электричество
- Требуемый навык
- Строительство 4
- Работа на выполнение
- 2,500 тиков (41.67 секунд)
- Ресурсы для создания
- 100 + 2
- Деконструкция доходности
- 50 + 1
Дровяной генератор - это источник энергии, работающий за счет сжигания древесины в качестве топлива. Вмещает до 75 единиц древесины и обеспечивает питание в течение примерно 3 дней и 9 часов до исчерпания при расходе топлива 22 в день.
Его можно построить после завершения исследования «Электричество». Он также производит небольшое количество тепла в качестве вторичного эффекта, но его недостаточно, чтобы классифицировать его как элемент контроля температуры.Однако их не следует размещать в помещениях, которые вы хотите охладить, или рядом с ними. Производство электроэнергии является постоянным до тех пор, пока не закончится топливо. Его можно выключить; в выключенном состоянии он не будет ни потреблять топливо, ни производить электроэнергию.
Анализ
Несмотря на значительные затраты на рубку и транспортировку древесины, генератор, работающий на дровах, тем не менее, представляет собой значительное улучшение топливной эффективности по сравнению с неолитической технологией отопления и охлаждения.
Например: пассивный кулер и электрический кулер имеют одинаковую охлаждающую способность (то есть они будут охлаждать одно и то же пространство на одинаковое количество градусов - в любом случае, до минимума пассивного кулера).Пассивный охладитель использует 50 единиц древесины и охлаждает в течение 5 дней, при этом расход древесины составляет 10 единиц на эквивалент холодного дня (CDE). Электрические охладители потребляют 200 Вт во включенном состоянии, то есть дровяной генератор может питать 5 из них, а его потребление древесины составляет 22 в день. Таким образом, потребление древесины на CDE составляет 4,4, что более чем вдвое увеличивает эффективность использования топлива! Это очень заметно, если вы играете по сценарию племени и вам нужно постоянное охлаждение.
Для сравнения, дерево / CDE для генератора, работающего на химическом топливе, равно 1.8. Несмотря на то, что химическое топливо требует затрат на переработку, меньшая рабочая нагрузка на ваши измельчители и самосвалы более чем компенсирует это; таким образом, дровяной генератор полностью устареет, если у вас есть доступ к химическому топливу.
Ветряные турбины, другой тип генератора, открытый в результате исследований в области электроэнергетики, требуют батарей для обеспечения стабильного питания. Таким образом, на практике они требуют дополнительных исследований, которых вы, возможно, не захотите ждать. Они также требуют больших вложений (особенно если принять во внимание необходимость в батареях) и требуют больше места и осторожности при их размещении.
Заключение: Если у вас есть хороший доступ к древесине, дровяные генераторы - естественный выбор для ваших первых или двух генераторов, поскольку они обеспечивают стабильную мощность с небольшими инвестициями и не требуют дополнительных исследований. В долгосрочной перспективе затраты на вырубку деревьев и транспортировку дров делают дровяной генератор непривлекательным по сравнению с генераторами без топлива, а компания chemfuel выводит его из употребления. Поскольку его можно отключить, он может служить в качестве аварийного резервного копирования после того, как вы перейдете на более эффективные генераторы.
История
- 0.13.1135 - добавлен.
- A15 - Топливный генератор будет расходовать топливо быстрее. Продолжительность топлива 5 дней -> 3 дня 9 часов.
- Beta 18 - название изменено с генераторов, работающих на топливе, на генераторы на дровах, но в остальном идентично. Это было изменено, чтобы избежать неоднозначности с генератором Chemfuel, который был добавлен в том же обновлении.
Генераторы природного газа: не только актуальны, но и критичны для микросетей
Джейми Смит из Generac исследует важность генераторов природного газа для современных микросетей.
Джейми Смит, вице-президент по развитию бизнеса коммерческого и промышленного подразделения Generac
Несмотря на проблемы глобальной пандемии, интерес к решениям для распределенной генерации и микросетям продолжает расти. Напряженный сезон ураганов и программы аварийного отключения коммунальных служб заставляют коммерческих и промышленных потребителей энергии искать решения, которые не только отвечают корпоративным целям устойчивого развития, но и обеспечивают отказоустойчивость. В сочетании с увеличением стоимости распределенной мощности на различных энергетических рынках растет спрос на генераторы природного газа в микросетевых системах.
Отчет, опубликованный Wood Mackenzie в июле 2020 года, выявил 546 микросетей, которые были установлены в 2019 году. Из этой установленной мощности 86% приходится на производство ископаемого топлива. Итак, с появлением ветряных, солнечных и аккумуляторных систем хранения в качестве жизнеспособных и экономичных энергетических решений, почему все еще существует значительный спрос на генераторы, работающие на ископаемом топливе, в проектах микросетей? Проще говоря, существует потребность в отказоустойчивости системы, которая часто перевешивает цели устойчивого развития. Генератор, работающий на ископаемом топливе, встроенный в решение микросети, гарантирует, что энергия будет там, когда это необходимо, более 99% времени.В обсуждениях с операторами объектов в таких отраслях, как здравоохранение, розничная торговля, производство и рестораны быстрого обслуживания, они отметили важность того, чтобы критически важные системы оставались в сети для обслуживания пациентов и клиентов или для предотвращения значительных финансовых последствий от потери запасов или сбоев в производстве. процесс.
В то время как операторы объектов ищут различные решения для обеспечения отказоустойчивости или критически важного резервного копирования, они, как правило, не забывают об устойчивости. По мере того, как они оценивают варианты производства энергии на ископаемом топливе, они быстро узнают, что экологические цели все еще могут быть достигнуты с использованием генерации, работающей на природном газе, для обеспечения электроэнергии на месте с использованием поршневых двигателей внутреннего сгорания.Воздействие на выбросы раствора, работающего на природном газе, может быть до 99% ниже, чем у его дизельного аналога, если смотреть на выбросы NOx. Согласно исследованию NREL: «Поскольку двигатели, работающие на природном газе, часто имеют значительно меньше выбросов серы и NOx, чем сопоставимые дизельные двигатели, природный газ может легче соответствовать требованиям к качеству воздуха. Это приводит к упрощению процесса выдачи разрешений на природный газ по сравнению с дизельным топливом ».
(График: Generac)
С ростом трубопроводной инфраструктуры страны доступность природного газа увеличилась, и он стал более экономичным.С 2010 года было опубликовано несколько отчетов, в которых говорится, что надежность газораспределительного трубопровода превышает 99,999%. Кроме того, инфраструктура газопровода в США хранит более 3,5 миллиардов кубических футов и имеет возможность изолировать распределение и локализовать подачу газа, обеспечивая несколько месяцев эксплуатации без какой-либо новой добычи. Во время значительных погодных явлений, таких как ураганы «Айрин» и «Сэнди», было упомянуто множество случаев, когда в критических системах, поддерживаемых дизельными генераторами, не хватало топлива, и они не могли возобновить работу в течение нескольких дней из-за сбоя в цепочке поставок или опасных условий для заправки. .Во время тех же штормов объекты, которые зависели от инфраструктуры природного газа, продолжали работать без сбоев.
Генераторы природного газа используются в трех основных приложениях, когда они включены в микросеть: комбинированное производство тепла и электроэнергии (ТЭЦ), управление энергией или нагрузкой, а также в качестве резервного для более крупного решения, которое может включать солнечную, ветровую, накопительную или другие периодические источники энергии. . Применения ТЭЦ включают использование генератора для производства электроэнергии, которая может питать систему микросетей, работая как в автономном режиме, так и в режиме подключения к сети.Кроме того, различные источники тепла, вырабатываемые генератором, такие как выхлопной поток, улавливаются для создания пара для локального нагрева, охлаждения и других технологических нужд. В результате общий КПД этих систем может достигать более 90% при сравнении теплотворной способности количества топлива, поступающего в генератор, с общей производимой электрической и тепловой энергией.
Появление системных интеграторов, которые включают ветряные, солнечные батареи, батареи и генераторы как в индивидуальные, так и в модульные решения для микросетей, преобладали в течение последних 10 лет.
Микросетевые системы управления энергией или нагрузкой используются для подачи энергии обратно в сеть или сокращения потребления энергии, обслуживаемой на месте, например, для снижения пиковых нагрузок. В этих приложениях часто предпочтительны генераторы природного газа, поскольку на них можно положиться для выработки номинальной мощности, когда это необходимо в течение неограниченного времени, в отличие от возобновляемых источников энергии, которые часто могут быть прерывистыми, или дизельных генераторов с фиксированной топливной мощностью. За последние пять лет появилась тенденция использовать резервный газовый генератор в приложениях помимо резервного .С появлением программной технологии, которая может управлять распределенными энергоресурсами (DER) и создавать виртуальные электростанции (VPP), микросети, использующие резервные генераторы природного газа, могут быть развернуты в качестве DER на энергетических рынках в реальном времени и предоставлять услуги для повышения надежности, эффективность и общая производительность сети. Это значительно снизило стоимость капитальных вложений в актив, который обычно покупается в качестве «страховки» на случай отключения электроэнергии.
Sagehen Microgrid в Калифорнии.Фотография: Generac
.Появление системных интеграторов, которые включают ветряные, солнечные батареи, батареи и генераторы как в индивидуальные, так и в модульные решения для микросетей, преобладали в течение последних 10 лет. Эти интеграторы варьируются от крупных генеральных и электрических подрядчиков до небольших начинающих компаний, разрабатывающих контейнерные решения. Обычно их интеллектуальная собственность - это программное обеспечение для управления и интеграции системы, и хотя система ориентирована на решение с использованием возобновляемых источников энергии, они часто стремятся к отказоустойчивости генератора на ископаемом топливе.В прошлом году в Калифорнии были примеры микросетевых систем, состоящих из солнечных батарей и батарей, которые не работали из-за дыма, создаваемого лесными пожарами. Добавление генерации в систему гарантирует, что она может работать 24/7/365. В удаленных «автономных» районах, где нет доступа к природному газу, микросеть может усилить способность многих генераторов работать на пропане, СПГ, КПГ и другом газообразном топливе.
СистемыMicrogrid продолжают становиться все более привлекательными для коммерческих и промышленных потребителей энергии, и альтернативы возобновляемым источникам энергии будут оставаться в центре внимания.Генераторы природного газа, интегрированные в решение микросетей, представляют собой экологически безопасную альтернативу, которая обеспечит надежность системы и даст возможность увеличить доходность проекта. Поскольку компании рассматривают свои планы устойчивости и отказоустойчивости, производители природного газа должны оставаться важной частью обсуждения.
Джейми Смит - вице-президент по развитию бизнеса коммерческого и промышленного подразделения Generac.
В вашем будущем паровая энергия?
Автор: Skip Goebel |
|
Выпуск № 43 • Январь / Февраль 1997 г. |
Если вы думаете, что пар - это старомодно, подумайте вот о чем: почти столетие назад паровые машины и корабли достигли скорости и эффективности, которых все еще трудно достичь даже с помощью современных двигателей внутреннего сгорания.
Пар - одна из самых мощных и самых опасных форм независимой энергии. Он настолько мощный, что здесь, в Tiny Power, производящей паровые машины, хотя бы раз в неделю нам звонят те, кто собирается спасти мир с помощью пара. Обычно требуется всего несколько минут разговора, чтобы понять, что вызывающий абонент нуждается в дополнительном обучении основам паровой инженерии.
Эта статья - попытка ответить на некоторые из многих вопросов о Steam. И я предполагаю, что первый вопрос: может ли это спасти мир, по крайней мере, в том, что касается ваших личных энергетических потребностей? Это зависит от.
Для первоначальных вложений в этот наиболее трудоемкий вид бытовой энергетики вы, вероятно, могли бы купить дизельный генератор и 5-10 тысяч галлонов топлива без значительных изменений в вашем образе жизни. Если вы планируете сжигать древесину, вы должны знать, что газификация древесины и сжигание ее в двигателе внутреннего сгорания - это очень устоявшаяся наука. Это может быть для вас более практичным приложением.
Если вам необходимо большое количество контролируемого тепла, скажем, для обогрева большого дома, птичника или даже печи, паровые установки выделяются тем, что отходящее тепло (выхлоп) парового двигателя дает вам чрезмерное количество БТЕ. играть с.
Что такое пар?
Что такое Steam? «Вода сошла с ума от жары» - лучший ответ. Вода фактически превратится в пар в вакууме, если ее температура будет поддерживать 40 градусов по Фаренгейту. И наоборот, при давлении 3200 фунтов. на квадратный дюйм и температуре около 720 градусов, пар становится «сверхкритическим» и фактически имеет такую же плотность, как вода. Современные паровые системы работают при таком давлении, потому что пар, который является «сверхизлучающим» газом, поглощает и отдает тепло намного быстрее, чем вода.
Только «сухой» пар производит полезную работу. Пар - это сухой, чистый газ без вкуса. Мутное вещество, которое вы видите, выходящее из чайника, на самом деле представляет собой просто водяной пар и не имеет никакого отношения к нашим потребностям, потому что, если вы его видите, вся работа уже сделана.
Одна из небольших высококачественных паровых машин, созданная компанией автора, Tiny Power, Inc. |
После того, как вода превратится в пар, вы можете повысить температуру газа и сохранить в нем больше энергии / работы.Мы называем этот пар «перегретым» паром, и хотя это желательное условие, оно редко используется в небольших паровых установках.
Что мы хотим делать с паром, так это извлекать из него работу. Работу лучше всего описать как движение или изменение скорости массы. Для работы требуется энергия. Передавать энергию массе - это одно, а передавать и использовать эту энергию - другое. Вода в виде пара - отличная среда для передачи энергии.
Вода - это практичное, безопасное и эффективное неорганическое химическое вещество, которое легко поглощает и передает энергию.Чтобы понять, как это происходит, попробуйте представить себе разницу, то есть разницу температуры, разницу давления или, более конкретно, разницу в объеме. По мере того, как пар переходит из одного объема в другой, работа сделана. Примером этого является опускание поршня в цилиндре, создавая больше пространства или объема (расширение). При изменении объема также должны происходить изменения температуры и давления. Это законы природы, которые нельзя изменить. У нас есть единицы измерения свойств массы. Обычно давление измеряется в фунтах на квадратный дюйм, объем - в кубических футах, а температура - в градусах Фаренгейта.(Я еще не измеряю, ребята.)
А сейчас позвольте представить вам британскую тепловую единицу (BTU). Это единица измерения в США, аналогичная калорийности в метрической системе. Это не что иное, как единица тепла. Одна британская тепловая единица - это количество тепла, необходимое для поднятия одного фунта воды на один градус по Фаренгейту. И наоборот, если фунт воды падает на один градус, он высвобождает одну британскую тепловую единицу.
Когда любое топливо сжигается, оно выделяет энергию в виде тепла, и это тепло можно измерить либо в британских тепловых единицах, либо в калориях.Мы будем использовать Btu. Примером может служить древесина дуба, стоимость фунта которой составляет 6–11 тысяч британских тепловых единиц. Считайте это потенциальной энергией или энергией, ожидающей своего появления. При окислении (сгорании) он выделяет энергию, и если мы производим пар с этой энергией, мы можем использовать пар для передачи этой энергии в другое место для выполнения полезной работы.
Паровой запуск Санта-Крус II , Эхо-Лейк, Калифорния |
Другими источниками БТЕ могут быть горячие источники или солнечная энергия. Помните, что мы ищем разницу в температурах; чем выше мы поднимем температуру воды, тем больше работы мы сможем проделать в воде.К сожалению, чем меньше разница температур, тем больше должен быть объем воды. Например, один фунт пара при 800 градусах содержит определенное количество работы; чтобы произвести такой же объем работы при 400 градусах, вам понадобится гораздо большее количество воды.
Итак, мы берем один фунт воды с температурой от 60 до 212 градусов, а это занимает 152 британских тепловых единицы. (212 - 60 = 152) Теперь мы добавляем еще одну британскую тепловую единицу, и все превращается в пар при атмосферном давлении. Верно? Неправильный!
Поднять температуру воды легко; замена воды на пар - это совсем другая игра.Чтобы изменить физическое состояние вещества, требуется много энергии. Помните, здесь не зря; скорее хранится.
Чтобы преобразовать один фунт воды из 212 градусов водяного столба в 212 градус водяного пара (все еще один фунт по весу) при атмосферном давлении, требуется еще 970 британских тепловых единиц. Если учесть все это, как в котле, мы получим перепад давления (внутри и снаружи). Этот фунт воды при 212 градусах занимал всего 0,2 кубических фута. Пар при 212 градусах и атмосферном давлении (или 14.7 фунтов. на квадратный дюйм) займет 27 кубических футов.
Теперь, если этому пару не позволяют расширяться в эти объемы, потому что он содержится, мы получаем повышение давления. Именно это давление мы будем использовать для выполнения своей работы.
Какой тип котла?
Емкость, в которой мы будем делать наш пар, называется бойлером. В основном есть три типа котлов.
Котел Fire Tube. Это самый старый, самый простой и тот, который обеспечивает стабильное производство пара.Он также наиболее опасен (имеет свойство взрываться). Поэтому больше не об этом. Забудьте об этом, нет, никак и т.д. Наклейте эту наклейку себе на мозг: В галлоне воды динамитная шашка.
Водяная трубка. Он более эффективен, безопасен, распространен, прост в сборке и т. Д. По сути, конструкция включает серию труб, идущих вниз от барабана и окружающих камеру сгорания (топку). Затем пар отводится из верхней части барабана, где он по трубе направляется по назначению.(См. Рисунок 1.)
Рисунок 1. Водотрубный котел |
Типичным примером этих типов является котел отопления дома. Эти конструкции также используются на больших кораблях и электростанциях. У нас есть один в нашем 23-дюймовом пароходе, который сжигает дрова, и он неплохо работает. Позвольте мне здесь добавить, что , если вы сжигаете твердое топливо (дрова или уголь), вы всегда будете обслуживать свой котел . Если не можете, просто отбросьте всю идею. Если можете, будьте готовы к вечному блаженству.
Базовая компоновка показана на рисунке. Ни в коем случае не используйте эту иллюстрацию для проектирования собственного котла. Если вам пришлось учиться, читая эту статью, вы не сможете, не захотите и не должны строить одну из них. Помните, смерть окончательна (и мучительна).
Доступно бесчисленное количество планов, одобренных, сертифицированных и хорошо протестированных. Steam определенно является «завершенной» наукой. Если вы посмотрите на желтые страницы, вы найдете сертифицированных производителей котлов, которые сделают свою работу правильно.Технически вы нарушаете закон, строя несертифицированный котел.
Однотрубные котлы или паровые котлы . Это, безусловно, самый эффективный, легкий и безопасный котел. Строить легко и недорого. Лучше всего они работают при непрерывной стабильной работе. Однако, обладая небольшой резервной мощностью, они чувствительны к колебаниям в подаче топлива и воды, не говоря уже о нагрузках. Самые распространенные варианты - портативные пароочистители. Современные мотели используют разновидность водонагревателей.
Пароход большего размера |
В основном они состоят из одного непрерывного змеевика или трубы в различных конфигурациях. Отсюда и название «Монотрубка». Если мы можем обеспечить точный контроль за нашим топливом / водоснабжением, то у нас есть идеальный котел для дома. Газовое и жидкое топливо - идеальный вид топлива для однотрубных труб, поскольку их легко регулировать. И да, существуют одобренные конструкции для монотрубок, и профессионалы могут сделать их довольно дешево.
Факты возгорания
Для горения данного количества топлива требуется определенное количество воздуха - не больше и не меньше. Кроме того, для сжигания требуется достаточное количество места. Недостаточно воздуха - неполное сгорание. Слишком много воздуха - воздух нагревается.
Кроме того, если мы заставим воздух встречать топливо слишком быстро, мы получим слишком горячий огонь. Это плохо, потому что при температуре выше 1800 градусов азот в воздухе и некоторые другие химические вещества начинают окисляться. Это не только ядовито, но и тратится впустую.
Пространство для сгорания важно, потому что его слишком мало, и мы гасим пламя. Держите зажженную свечу так, чтобы пламя коснулось кубика льда, и если вы посмотрите очень внимательно, то увидите невидимый слой газа, изолирующий пламя от поверхности. Этот слой представляет собой несгоревшие газы, такие как окись углерода, и возникает потому, что температура поверхности была ниже температуры воспламенения горючих газов. Правило: пламя не должно касаться металла.
Кроме того, слишком много места, и мы можем потерять наши коэффициенты излучения.Вообще говоря, 60-70% энергии котла передается за счет лучистой энергии, а не горячих газов.
Паровой трактор половинной шкалы |
Идея здесь состоит в том, чтобы аккуратно объединить воздух и топливо вместе и дать ему достаточно места или времени, чтобы сделать свое дело. Для всех этих факторов существуют определенные формулы, и ваш производитель котлов будет знать, что делать, как только вы сообщите ему, в чем заключаются ваши потребности.
Огромный крутящий момент
Теперь, когда у нас есть Steam, давайте воспользуемся им.Мы извлекаем работу из пара, позволяя ему расширяться в контролируемой среде, например, с помощью поршня в цилиндре или сопла в турбине.
Турбины хороши, и у меня есть одна, но в домашних условиях они очень неэффективны. Это просто вопрос физики и затрат. Я знаю, что есть множество людей, которые будут возражать по этому поводу, но если они смогут придумать эффективную турбину домашнего масштаба и продать ее по разумной цене, я куплю ее.
Итак, мы остановились на поршневом (поршневом) двигателе.Мужаться. Они работают, служат и существуют уже давно. Паровые двигатели тихие, тяжелые, долговечные и, если они современные, просты в обслуживании (в наших более крупных моделях используются герметичные шарикоподшипники).
Вы можете найти множество бывших в употреблении двигателей на старых верфях, нефтеперерабатывающих заводах, старинных фабриках, шахтах и железных дорогах. Или вы можете купить новый.
Рассмотрим паровые машины, похожие на быстродействующий гидроцилиндр с автоматическим клапаном. Плунжер соединен с кривошипом, который вращается и выполняет полезную работу.Важно отметить, что большинство паровых двигателей рассчитано на то, что пар работает с обеих сторон поршня, что делает его «однотактным» двигателем. Это также заставляет поршневые двигатели развивать огромный крутящий момент практически на любых оборотах. Вы можете рассчитать этот крутящий момент, взяв квадратные дюймы поршня, умножив полученное значение на среднее давление в цилиндре и умножив это число на длину хода, измеренную в футах, разделенную на 2. Пример: одноцилиндровый двигатель имеет отверстие 3 дюйма и ход 4 дюйма и работает при среднем давлении в цилиндре 100 фунтов или «среднем» давлении.Трехдюймовый поршень имеет примерно 7 квадратных дюймов (3 x 3 x 0,7854) и ход 0,33 фута. (4/12). 7 х 0,33 = 2,31. Умножьте это на давление в 100 фунтов x 2,31 = 231 и разделите это на 2, и вы получите 115,5 фунт-футов крутящего момента. В действительности, однако, возникают потери на трение и эффективность.
Эффективность измеряется тем, сколько пара / воды потребляет двигатель для выполнения определенного объема работы. Обычно это измеряется в фунтах пара / воды на мощность в час. По-английски это означает, что на каждую мощность, произведенную в течение одного часа, через двигатель проходит определенное количество пара / воды.
Наша цеховая установка используется последние 18 лет и производит 4000 Вт в час. Он потребляет около 250 фунтов воды (которая превратилась в пар) за один час. 750 ватт считается одной лошадиной силой, и если вы подсчитаете потерю эффективности, это составит около 47 фунтов на каждую лошадиную силу в час (250 фунтов, разделенные примерно на 5,3 лошадиных силы). Другими словами, на каждую лошадиную силу, производимую двигателем, мы испарили 47 фунтов воды в пар и пропустили его через двигатель.
Есть двигатели, которые намного эффективнее, но они стоят намного дороже, чем вы хотите заплатить.Эффективность - это хорошо, но если топливо бесплатное, зачем вам это нужно? Потому что чем меньше дров вы сжигаете, тем меньше вам придется распилить. За 10 дней я потратил ровно деревянного шнура, и для меня это слишком много работы.
Все это возвращает нас к вопросу, почему пар против других форм независимой энергии? Потому что, если вы используете большое количество тепла, выхлоп двигателя даст вам именно это.
Паровые двигатели и котлы обычно наиболее эффективны при полной настройке, всех открытых клапанах, полном огне и т. Д., Поэтому мы переходим к следующей теме:
AC vs.DC
В домашних условиях электричество - самый распространенный вид энергии. Таким образом, паровой двигатель / генератор оказывается наиболее практичным приложением.
Генераторымогут быть переменного или постоянного тока, и у обоих есть свои приложения. В магазине Tiny Power наш Winco мощностью 4 кВт - это переменный ток.К сожалению, переменного тока требуется точный контроль скорости в виде тонкого регулятора и тяжелого маховика. Я бы посоветовал большинству людей использовать вместо этого D.C. D.C. проще изготавливать, контролировать и, что самое главное, его можно хранить.Вырабатывая электроэнергию постоянного тока и накапливая ее, паровая система может работать с максимальной производительностью в течение короткого периода (наиболее эффективно), а не простаивать весь день (неэффективно). Это практично, потому что вы можете сделать электричество заранее, а затем заняться своими делами.
Этот пароход с его типичной силовой установкой использовался в фильме Maverick |
Я какое-то время управлял паровой электростанцией постоянного тока мощностью 1 кВт в качестве туристической достопримечательности здесь, в Брэнсоне, штат Миссури, и влюбился в высокое напряжение D.C. В системе были фары и двигатели с напряжением 120 вольт. Единственный недостаток - постоянный ток плохо воздействует на контакты и переключатели. Вы должны покупать те дорогие выключатели и прерыватели, которые рассчитаны на
постоянного тока.Пар для дома
Tiny Power предлагает 13 различных моделей двигателей и аксессуары, и мы обслуживаем в основном любителей, таких как вышедшие на пенсию машинисты и пароходы по всему миру. Однако наше сердце по-прежнему стремится к самодостаточности.
Я сам нахожусь в процессе создания другой компании, специализирующейся на использовании пара в качестве домашней энергии.Я не выставлю его на рынок, пока система не станет надежной, эффективной и доступной.
Следующий проект демонстрирует практическую концепцию системы парогенератора в домашних условиях. Это не настоящий проект, и я не несу ответственности за тех, кто использует его как таковой. Для тех людей, которые думают, что они собираются использовать свою дровяную печь для приготовления пара, пожалуйста, сделайте следующее: включите меня в свое завещание, отправьте детей жить с бабушкой, дайте справедливое предупреждение соседям и расплатитесь за свою собственность на берегу океана. в Аризоне.
Начнем с потребностей. Нашему дому потребуется 2400 ватт / час электроэнергии в день. Поскольку мы получаем от батареи только 75% от того, что мы в нее вкладываем, нам нужно вложить 3200 ватт / час (2400 / 0,75 = 3200). Несмотря на то, что 750 Вт = 1 л.с., генераторы, ремни и т. Д. Неэффективны. Безопасная цифра - 30% потерь, поэтому 3200 Вт при КПД более 70% = 4266 Вт (3200 / 0,70 = 4571). Округлите до 4600. Тогда наша потребность в лошадиных силах составит 4600 ватт / час, разделенные на 750, что составляет 6,1 лошадиных сил (4600/750 = 6.1).
Используя 47 фунтов пара на каждую лошадиную силу в час, потребляемую нашим двигателем, мы берем 6,1 и умножаем его на 47, и получаем 286,7 или, по сути, требуется 287 фунтов пара / воды.
Мы скажем, что для превращения воды в пар при нашем рабочем давлении 120 фунтов на квадратный дюйм потребуется 1200 британских тепловых единиц на фунт воды / пара. Итак, требуется 287 фунтов пара / воды x 1200 британских тепловых единиц = 344 400 британских тепловых единиц (287 x 1200).
Эффективность нашего котла составляет 70%, поэтому разделение 344 400 БТЕ на 70% дает нам цифру в 492 000 БТЕ (344 400 /.70 = 492 000).
Наша древесина имеет теплотворную способность 7000 британских тепловых единиц на фунт, поэтому нам нужно 70,3 фунта древесины (492000/7000 = 70,3). Давайте распределим нагрузку на два часа, и мы увидим, что мы сожжем 35,2 фунта древесины в час (70,3 / 2 = 35,2), или около 35 фунтов. Чтобы представить это в перспективе, это огромная охапка дерева.
Помните, это цифры из «реального мира», которые кардинально отличаются от того, что придумает какой-нибудь так называемый «образованный» тип с розовыми руками.
> Щелкните это изображение, чтобы просмотреть полную версию страницы (111K).Чтобы вернуться на эту страницу, воспользуйтесь кнопкой НАЗАД в браузере. |
Если вы будете следовать рисунку 2, обратите внимание на направление потока топлива и воды. Это однотрубная конструкция, в которой используются электрические насосы и воздуходувки, что упрощает управление.
Он будет сжигать древесный газ из «варочных котлов», которые нагревают древесину до температуры возгорания, но лишают ее кислорода. Этот несгоревший газ затем смешивается с нагретым воздухом и сжигается в основании котла. Газы сгорания проходят по водяным трубам, затем через воздухонагреватель и выходят из выхлопной трубы.
Вода поступает во внешний змеевик, забирает тепло, попадает в теплообменник (пароохладитель) и в сепаратор. Пар выходит из верхней части сепаратора во внутренний змеевик, который действует как перегреватель. Чрезмерно горячий пар проходит через пароохладитель, выделяя некоторое количество БТЕ в поступающую воду. Теперь «закаленный» пар направится к двигателю, где и сделает свою работу. Выхлоп двигателя попадает в змеевик, который находится внутри большого резервуара, и выделяет оставшееся тепло в воду.После этого наш пар конденсируется в воду и проходит через вакуумный насос, который выходит в «горячий колодец». С этого момента он перекачивается обратно в котел через подающий насос высокого давления, чтобы начать все сначала.
Получение образования
Я не могу переоценить важность получения образования перед тем, как возиться. На крупных лесопильных заводах обычно есть электростанция, а инженеры - близкие по духу люди, которые всегда хотят похвастаться своим «малышом». Совершите поездку по старым кораблям или нефтеперерабатывающим заводам и не бойтесь задавать вопросы.Вы получите больше от кого-то, если зададите вопросы, чем если попытаетесь рассказать им то, что знаете.
Высшее образование - это посещение шоу парового клуба. Их буквально тысячи каждый год. Скорее всего, вы менее чем в часе езды от него. Не забудьте взять с собой детей. Шоу - определенно семейное дело. Любой хобби-магазин должен сообщить вам, где он находится.
Также ознакомьтесь с различными доступными публикациями. Есть несколько журналов о паровых двигателях.У всех есть большой раздел рубричных объявлений. Мы настоятельно рекомендуем тот, который называется «Каталог шоу Steam», где перечислены более 500 шоу Steam в этой стране и Канаде.
Добро пожаловать в братство.
Для дальнейшего чтения
Live Steam
P.O. Box 629
Traverse City, MI 49685
(Паровые двигатели всех видов, в том числе в Интернете)
Model Engineer
4314 W. 238th St.
Torrance, CA
(Главный журнал по изготовлению моделей, в том числе и для игрушечных паровых машин)
Modeltec
P.O. Box 1226
St. Cloud, MN 56302
(Все виды рабочих моделей - паровые, газовые двигатели, горячий воздух и т. Д.)
Пароход
Rt. 1, Box 262
Middlebourne, WV 26149
(Для знатока пароходов, все размеры, отличное чтение!)
Альбом Iron Men
P.O. Box 328
Lancaster, PA 17608
(Старые паровые тракторы и стационарные двигатели, крупные объявления)
Engineers & Engines
1118 N. Raynor Ave.
Joliet, IL 60435
(со старыми двигателями и оборудованием, большие объявления)
Справочник парогазовых выставок
P.О. Box 328
Lancaster, PA 17603
(Список всех выставок в Канаде и США. Это обязательное условие)
NT6
Инженер NT / 6
Эти фотографии были сделаны во время первого пробного запуска газогенераторной секции NT / 6.
Полностью загружен 60 фунтами колотого дерева, давление нагнетания компрессора 12 фунтов на квадратный дюйм.Прибл. Скорость вращения турбины газогенератора 120 000 об / мин. Давление масла 50PSI. 1400 градусов F EGT. Эта штука действительно гудит!
Это хороший снимок электрического масляного насоса. Выхлопной шлейф виден с левой стороны турбонагнетателя.
Вот вид огня в камере сгорания через смотровое стекло из пирекса.
Боковой фитинг для воздуха предназначен для поддержания чистоты стекла.
Обновление 21 августа
Это NT / 6 после первого теста дроссельной заслонки.Троттлинг работал, но не совсем так, как ожидалось. Были определены необходимые изменения, которые будут внесены на этой неделе. Время работы было: 30 мин при 10-15 фунт / кв. Дюйм без утечки газа, как и раньше. Звук оглушительный, нужен глушитель воздухозаборника. Испытание было прервано через 30 мин из-за продувки шланга нагнетательного воздуха компрессора. Вся древесина кажется только почерневшей.
Обновление 20 января
Наконец-то у меня появилось время вернуться к этому важному проекту. Новая система дроссельной заслонки отлично работает! Мы также научились заправлять меньше топлива при запуске для более чистого и контролируемого сжигания.Эта штука работает даже лучше, чем я думал. смотрите новые видео ниже ....
NT / 6 Особенности (предлагаемые технические характеристики)
- самозапускающийся.
- работает на дереве, мусоре или биомассе (или чем-либо еще, что вы можете поместить в камеру сгорания, что горит и выделяет хорошее тепло).
- полностью самодостаточный - может работать в удаленных местах без газа или дизельного топлива.
- ожидается непрерывная выработка около 2000 Вт.
- Выход постоянного тока: 24 В при 80 А
- Выход переменного тока: 120 - 240 В при 50-60 Гц (выход переменного тока будет зависеть от емкости аккумулятора и инвертора)
- отличный источник тепла.
- расход дров: уточняется.
- проста в обслуживании, (меняйте масло раз в несколько месяцев)
- надежна, турбины просты и служат долго.
Еще не все. Я еще не начал работать над бесплатной системой турбины и генератора. (Слишком занят другими проектами!)
NT / 6 Потоковое видео
Примечание. В большинстве случаев ваш компьютер будет пытаться воспроизвести эти видео по мере их загрузки (потоковое видео).Если ваше соединение недостаточно быстрое, они не будут воспроизводиться плавно. Для более медленных подключений Щелкните видео правой кнопкой мыши и выберите «Сохранить цель как». Сохраните видеофайл на рабочем столе и воспроизведите его оттуда.